

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

Name:

Initial version by H. Lam, February 2015. Last updated March 8, 2021 Various corrections by students and members of the Department of Mathematics at North Sydney Boys High School and Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕝 CC BY 2.0.

Parts of this document are also sourced from:

- Exercises on page 6: Jones and Couchman (1981, Ex 8.1)
- Exercises on pages 18, 11 and 15: Grove (2010, Ex 6.7)

Symbols used:

 $\mathbb N \,$ the set of natural numbers

- $\mathbbm{Z}\xspace$ the set of integers
- \mathbb{Q} the set of rational numbers
- \mathbb{R} the set of real numbers

 \forall for all

- (2) Mathematics (2 Unit) legacy course content/textbook
- (A) Mathematics Advanced content/textbook
- (x1) Mathematics Extension 1 content/textbook
- Extension work.
- Hemorisation required.
- Enrichment & problem solving.
 Understanding (as opposed to blatant memorisation) is required.
 M
 - Warning. Beware!

Available on NESA Reference Sheet

Syllabus outcomes addressed

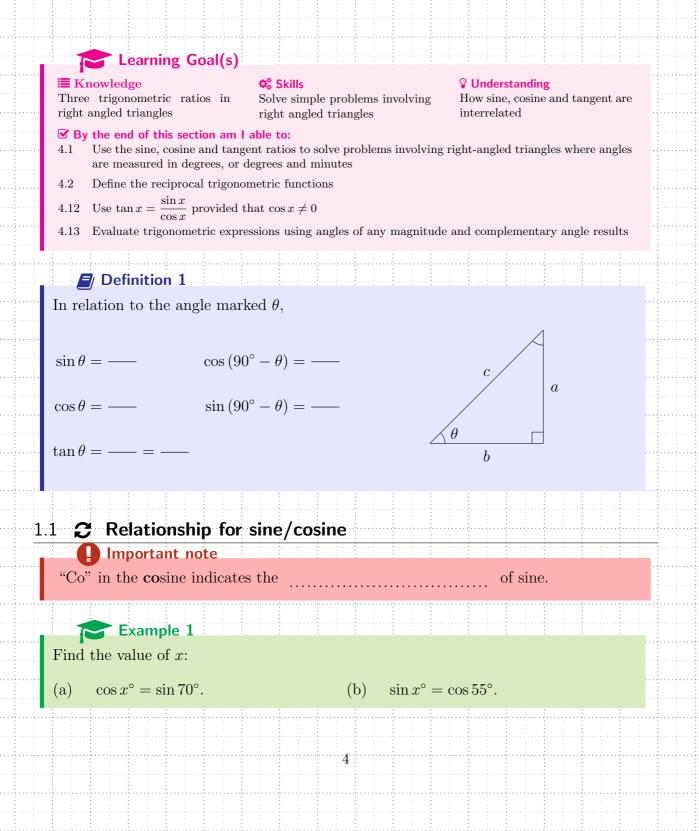
- MA11-3 uses the concepts and techniques of trigonometry in the solution of equations and problems involving geometric shapes
- MA11-4 uses the concepts and techniques of periodic functions in the solutions of trigonometric equations or proof of trigonometric identities

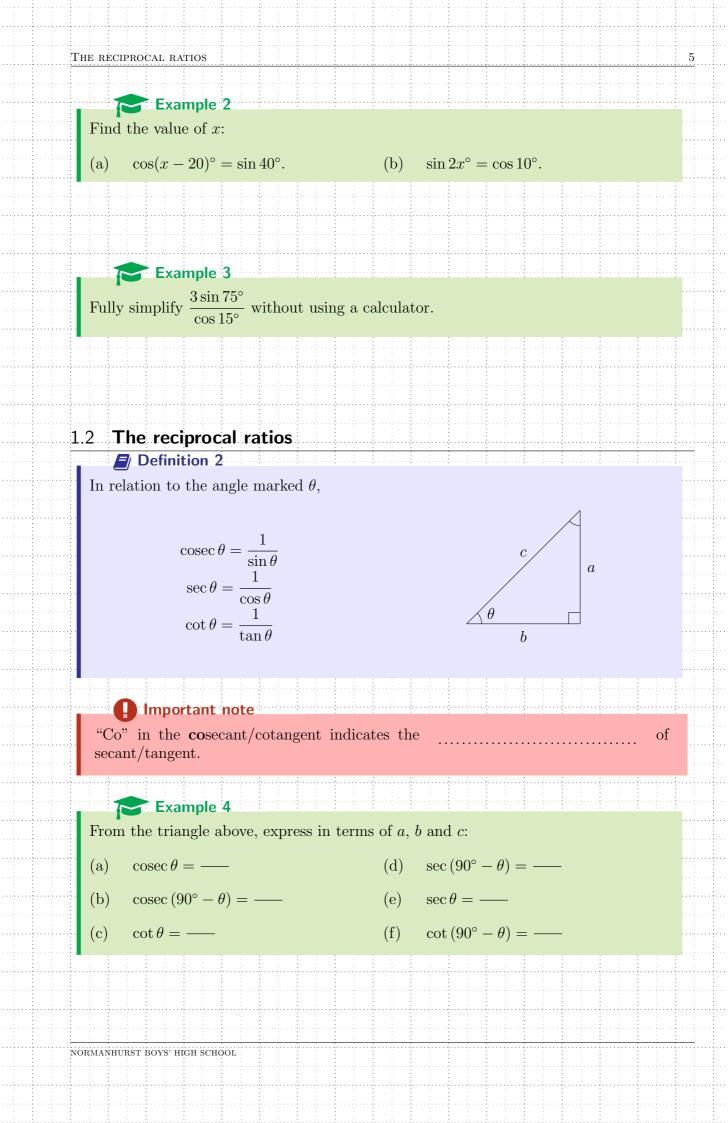
Syllabus subtopics

MA-T1 Trigonometry and Measure of Angles

 ${\bf MA-T2}~{\rm Trigonometric}~{\rm Functions}~{\rm and}~{\rm Identities}$

Gentle reminder

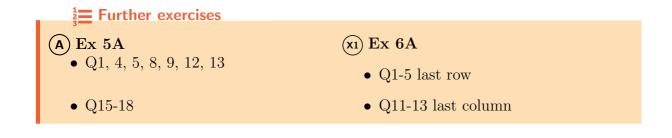

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from (2) Cambridge Year 11 2 Unit or (x1) Cambridge Year 11 3 Unit will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book, unless it is a worded problem!

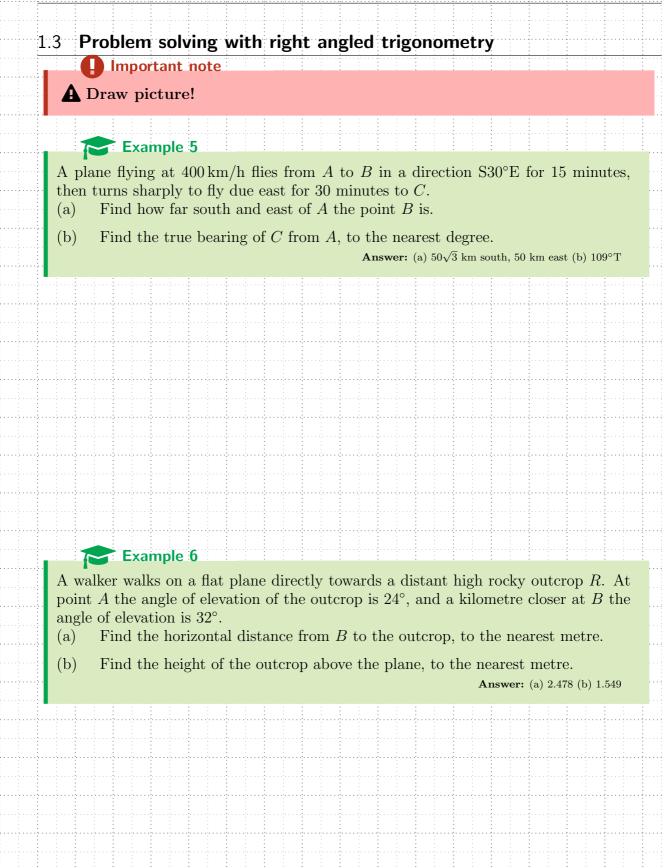

Contents

1	Trig	onometric Ratios	4
	1.1	\mathcal{C} Relationship for sine/cosine	4
	1.2	The reciprocal ratios	5
	1.3	Problem solving with right angled trigonometry	7
	1.4	\mathcal{C} Exact values and angles of any magnitude	9
	1.5	Other ratios	13
	1.6	Given one ratio, find another	16
	1.7	C Trigonometric Graphs	19
2	Trig	onometric identities and equations	23
_	2.1	Pythagorean identity	$\overline{23}$
		2.1.1 Elimination of θ	27^{-3}
	2.2	Trigonometric equations	$\frac{2}{28}$
3	Non	right-angled trigonometry	32
J	3.1	Sine rule	3 2
	5.1		$\frac{32}{38}$
	3.2	3.1.1 Ambiguous case	
		Area via sine rule	39 49
	3.3	Cosine rule	42
	3.4	General problem solving	49
4	3D '	Trigonometry	51
	4.1	Techniques required	51
	4.2	Examples	52
Re	efere	nces	68

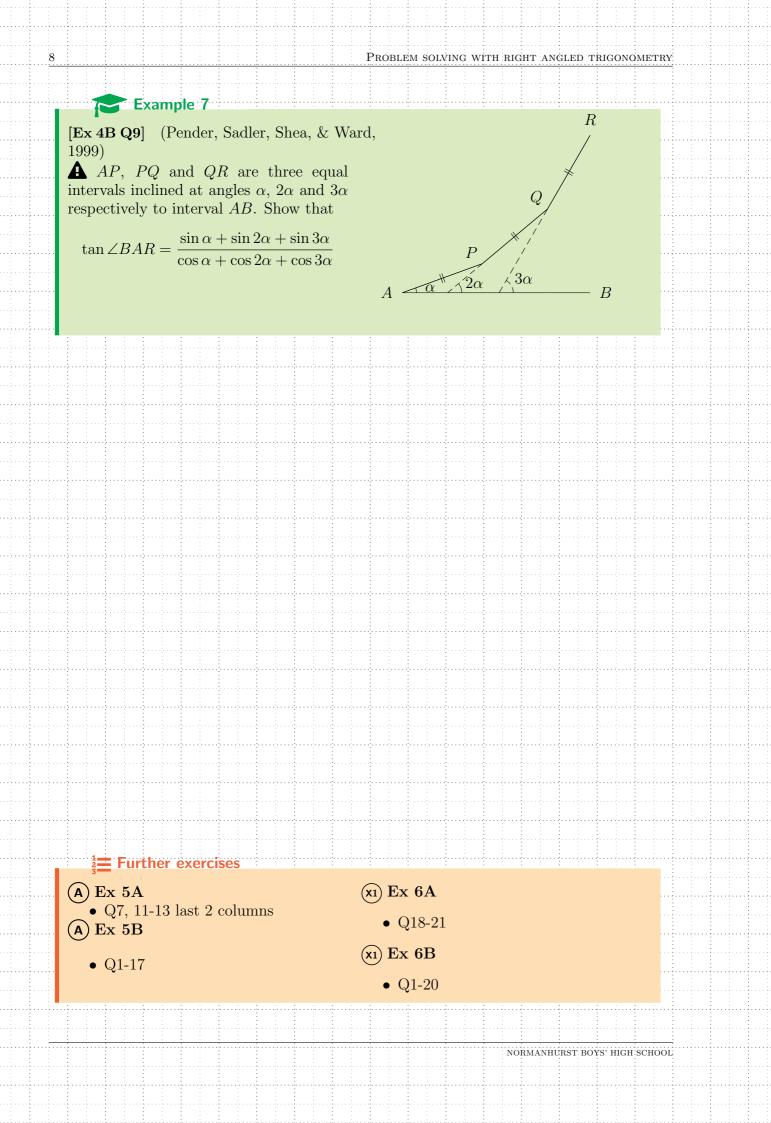
Section 1

Trigonometric Ratios




Source: Jones and Couchman (1981, Ex 8.1)

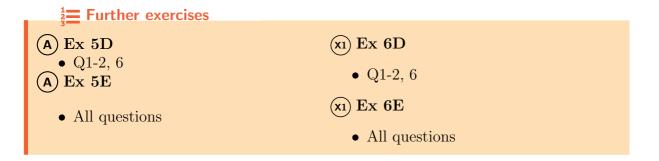
- **1.** Find the value of x if
 - (a) $\operatorname{cosec} x^\circ = \sec 60^\circ$ (c) $\operatorname{sec} x = \operatorname{cosec} 35^\circ$
 - (b) $\cot x = \tan 40^{\circ}$ (d) $\tan x = \cot 65^{\circ}$
- **2.** Without using a calculator, evaluate:
 - (a) $\frac{\sin 70^{\circ}}{\cos 20^{\circ}}$. (b) $\frac{\csc 40^{\circ}}{\sec 50^{\circ}}$. (c) $\frac{\tan 80^{\circ}}{\cot 10^{\circ}}$.
- **3.** Find the value of x if
 - (a) $\tan 20^\circ = \cot(x+30)^\circ$ (b) $\sin x^\circ = \cos(x+50^\circ)$

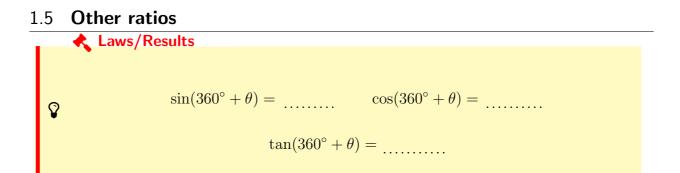

Answers

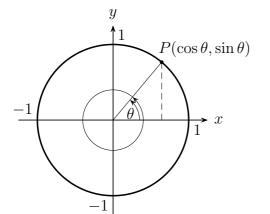
1. (a) 30 (b) 50 (c) 55 (d) 25 **2.** (a) 1 (b) 1 (c) 1 **3.** (a) 40 (b) 20

7

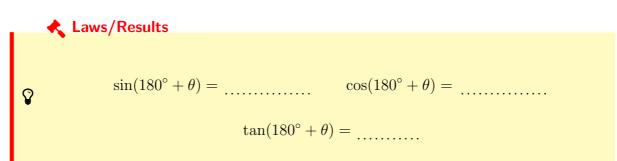
	_ .								
Ex spo	ecial angles By the end of Understan Evaluate t	for part f this sect ad the unit crigonome	ticular tion am l t circle d tric expre	exact rat able to: efinition of	calculations tios and values $\sin \theta$, $\cos \theta$ and g angles of any another	d $\tan \theta$ and	Unit trigo periodio	onometric ra	definitions tios
		0							
1.4	🕻 Exac	t valu	es an	d angle	s of any	magnit	ude		
This e	exact values	s table i	is secor	nd only to	o the multi	plication	tables	Į	
				$\overline{\theta}$ 0°	30° 45°	60° 90			
				$\sin \theta = 0$	$\frac{1}{2}$ $\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2} \qquad 1$			
				$\frac{\cos \theta \mid 1}{}$	$\frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}}$	$\frac{1}{2}$ 0	<u></u>		
Fir	$\mathbf{F} \mathbf{E} \mathbf{x} \mathbf{a}$ and sin α , cos			f $\alpha =$	······································	•••• •••• •••• ••••		. ((()	
1.	30°	3.	45°	5.	150°	7.	240°	9.	330°
2.	60°	4.	90°	6.			315°		300°
•									
••••••									
		· · · · · · · · · · · · · · · · · · ·							
		·····							
		1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

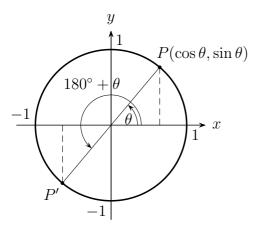

10				· · · · · · · · · · · · · · · · · · ·	· · ·	Ĉ	EXACT VA	LUES AND	ANGLES OF	ANY MAGN	NITUDE		•
		🗲 Exar	nple 9									•••••	
	-		nout using	a calcul	ator:								
	(a)	$ an 30^{\circ}$ s	sin 60°			(b)	$\tan^2 60^\circ$	$-\sin^2 60$	0				
	(a)		: : :	: : :								•••••	
													* * * * *
			: : :										
	1.1.1.1	-var	nnlo 10		•••••••••••••••••••••••••••••••••••••••					• • • {• • • • {• • • • {			
	-		nple 10 oct. value	oivino	answer	s in sir	nnlest su	rd form	with a	rationa	1		
	Find		nple 10 act value,	giving	answer	s in siı	nplest su	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer			rd form	with a	rationa	1		
	Find	the exa minator.		giving	answer	s in siı (b)	nplest su $\frac{\sin 45^{\circ}}{\sec^2 60^{\circ}}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$	rd form	with a	rationa	1		
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$		with a				
	Find deno	the exa minator.	act value,	giving	answer		$\sin 45^{\circ}$						

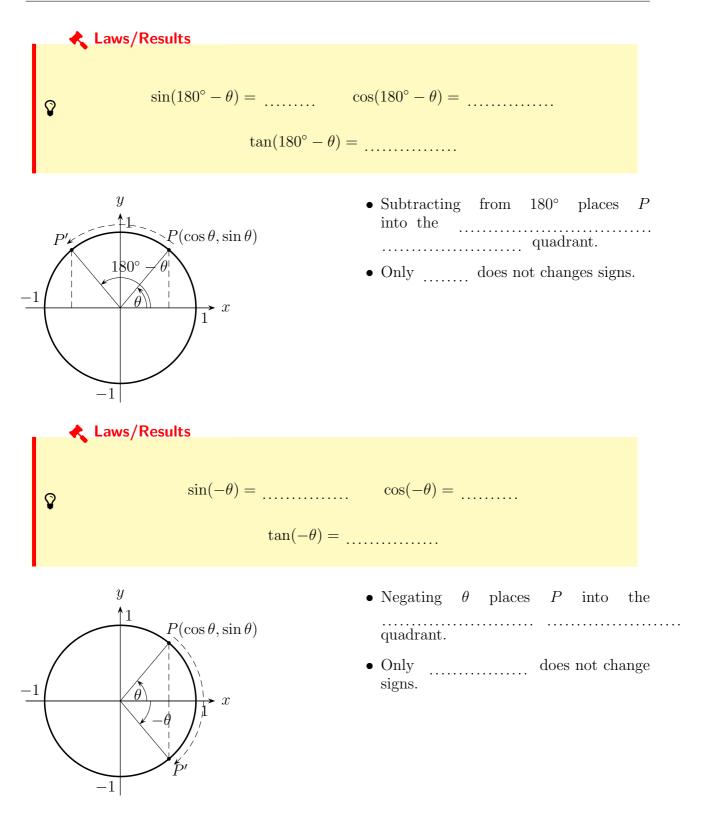

1.	Find	all quadrants w	vhere												
	(a)	$\cos \theta > 0$	(e)	$\sin heta$	< 0		(i)	$\cos \theta$	< 0 8	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
	(b)	$\tan\theta>0$	(f)	$\cos \theta$	< 0		(j)	$\sin \theta$	$\theta > 0 \& \tan \theta > 0$						
	(c)	$\sin\theta > 0$	(g)	$\sin \theta$	< 0 & co	$\sin \theta < 0$									
	(d)	$\tan\theta < 0$	(h)	$\sin \theta$	< 0 & ta	$\ln \theta > 0$									
2.	(a)	Which quadra	nt is the angle	240° ir	n? (b)	Find th	e exac	t valu	ue of c	$\cos 240^{\circ}$.					
3.	(a)	Which quadra	nt is the angle	315° ir	n? (b)	Find th	e exac	t valu	ue of s	$\sin 315^{\circ}$.					
4.	(a)	Which quadra	nt is the angle	Find th	e exac	t valu	ue of t	an 120°.							
5.	(a)	Which quadra	nt is the angl	e - 225	° in?										
	(b)	Find the exact	value of sin	-225° .											
6.	(a)	Which quadra:	nt is the angl	e -330	° in?										
	(b)	Find the exact	value of cos												
7.	Find	the exact value	of each ratio):											
	(a)	$\tan 225^{\circ}$ (c)	$\tan 300^\circ$	(e)	$\cos 120^{\circ}$	(g)	$\cos 33$	80°	(i)	$\sin 300^{\circ}$					
	(b)	$\cos 315^{\circ}$ (d)	$\sin 150^{\circ}$	(f)	$\sin 210^{\circ}$	(h)	$\tan 13$	50°	(j)	$\cos 135^{\circ}$					
8.	Find	the exact value	of each ratio):											
	(a)	$\cos\left(-225^\circ\right)$	(d) $\cos\left(-\frac{1}{2}\right)$	-150°)	(g)	$\cos\left(-3\right)$	00°)	(j)	\sin	(-135°)					
	(b)	$\cos\left(-210^\circ\right)$	(e) $\sin\left(-\frac{1}{2}\right)$	-60°)	(h)	$\tan\left(-3\right)$	(0°)								
	(c)	$\tan\left(-300^\circ\right)$	(f) $\tan\left(-\frac{1}{2}\right)$	$-240^{\circ})$	(i)	$\cos\left(-4\right)$	$5^{\circ})$								
9.	Find	the exact value	of each ratio):											
	(a)	$\cos 570^{\circ}$ (c)	$\sin 480^{\circ}$	(e)	$\sin 690^{\circ}$	(g)	$\sin 49$	5°	(i)	$\tan 675^{\circ}$					
	(b)	$\tan 420^{\circ}$ (d)	$\cos 660^{\circ}$	(f)	$\tan 600^{\circ}$	(h)	$\cos 40$)5°	(j) $\sin 390^{\circ}$						
a	C														


Source: Grove (2010, Ex 6.7)

Answers


1. (a) 1,4 (b) 1,3 (c) 1,2 (d) 2,4 (e) 3,4 (f) 2,3 (g) 3 (h) 3 (i) 3 (j) 1 **2.** (a) 3 (b) $-\frac{1}{2}$ **3.** (a) 4 (b) $-\frac{1}{\sqrt{2}}$ **4.** (a) 2 (b) $-\sqrt{3}$ **5.** (a) 2 (b) $\frac{1}{\sqrt{2}}$ **6.** (a) 1 (b) $\frac{\sqrt{3}}{2}$ **7.** (a) 1 (b) $\frac{1}{\sqrt{2}}$ (c) $-\sqrt{3}$ (d) $\frac{1}{2}$ (e) $-\frac{1}{2}$ (f) $-\frac{1}{2}$ (g) $\frac{\sqrt{3}}{2}$ (h) $-\frac{1}{\sqrt{3}}$ (i) $-\frac{\sqrt{3}}{2}$ (j) $-\frac{1}{\sqrt{2}}$ **8.** (a) $-\frac{1}{\sqrt{2}}$ (b) $-\frac{\sqrt{3}}{2}$ (c) $\sqrt{3}$ (d) $-\frac{\sqrt{3}}{2}$ (e) $-\frac{\sqrt{3}}{2}$ (f) $-\sqrt{3}$ (g) $\frac{1}{2}$ (h) $-\frac{1}{\sqrt{3}}$ (i) $\frac{1}{\sqrt{2}}$ (j) $-\frac{\sqrt{3}}{2}$ (b) $\sqrt{3}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$ (e) $-\frac{1}{2}$ (f) $\sqrt{3}$ (g) $\frac{1}{\sqrt{2}}$ (h) $-\frac{1}{\sqrt{2}}$ (h) $-\frac{1}{\sqrt{2}}$ (h) $-\frac{1}{\sqrt{2}}$ (h) $\sqrt{3}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$ (e) $-\frac{1}{2}$ (f) $\sqrt{3}$ (g) $\frac{1}{\sqrt{2}}$ (h) $\frac{1}{\sqrt{2}}$ (i) -1 (j) $\frac{1}{2}$

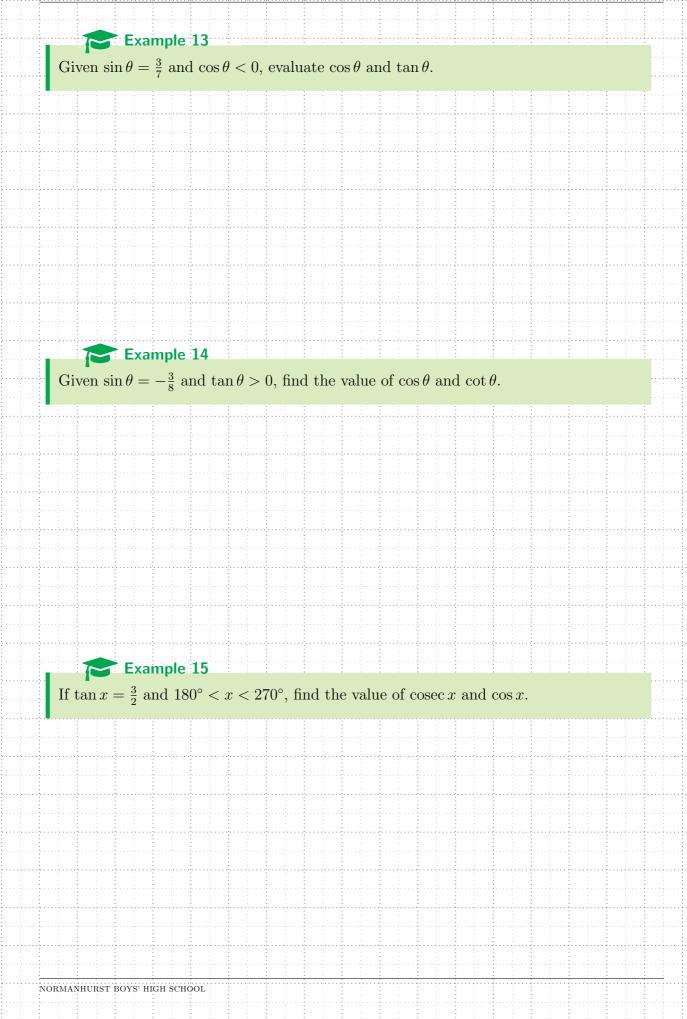




• Adding one will not alter the ratios.

- Adding 180° places *P* into the quadrant.
- All ratios except changes signs.

Simplify fully:

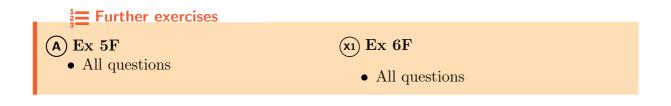

1.	$\sin\left(180^\circ - \theta\right)$	4.	$\sin\left(180^\circ + \alpha\right)$	7.	$\cos\left(-\alpha\right)$
2.	$\cos\left(360^\circ - x\right)$	5.	$\tan\left(360^\circ-\theta\right)$	8.	$\tan\left(-x\right)$
3.	$\tan\left(180^\circ + \alpha\right)$	6.	$\sin\left(- heta ight)$		

Source: Grove (2010, Ex 6.7).

Answers

1. $\sin \theta$ **2.** $\cos x$ **3.** $\tan \alpha$ **4.** $-\sin \alpha$ **5.** $-\tan \theta$ **6.** $-\sin \theta$ **7.** $\cos \alpha$ **8.** $-\tan x$

1	16												· · · · · · · · · · · · · · · · · · ·		Gı	VEN	ONE F	RATIO	, FIN	D AN	юті	IER.		
						· · · · ·		•					* · · · · · · · · · · · · · · · · · · ·	• · ·		· · · · · · · · · · · · · · · · · · ·			*		· · · · · · · · · · · · · · · · · · ·			
	1.6	(Giver					nd a	not	her		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •						****	· · · · · · · ·		· · · · · · · · ·		
•••••					tant					:											•			
		A											e appi			qua	adran	t.						
		A	Do	NOI	ſ use	the	calc	ulat	or to	evalı	iate	e the	pronu	ımer	al!									
••••																	· · · · · · · · · · · · · · · · · · ·							
	·		en sec		nple		เร ลดา	ite :	i i find t	: the v	alue	e of c	s At	an A	anc	: : I sir	n A	1 1	:		: :			
;	· `			······																				 • • • •
			=] S	teps										•		· · · · · · · ·								
		נ נ.				dia	ram	den	lictin	r sec	$\theta =$	3 an	d acu	te A	in tl	he c	orrec	et au	adr	ant				
	•		Dia			ana	51 00111	uop	100111	5 000	0	0 411	a aca	000			.01100	e qu						
																								 ••••
																							· · · · · · · · · · · · · · · · · · ·	
	4	2.	Find	l mis	ssing	side	e leng	gth (label	on d	liag	ram)												
••••		3.	Eval	uate	e the	oth	er rat	tios:																
••••																							•••••	
••••																								
	1					1111																		
	····;			Exar	nple	12		· · · · ·					• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · ·					: :;		•••••	
· · · ?	1		•																:					
			$l \sin x$	and		x in	exa	et su	urd fo	rm w	her	1 cos	x = -	$-\frac{2}{3}$ as	nd 9	0° -	< x <	< 180	:)°.		• •			
ș	1	:	$l \sin x$	and		x in	exa	et su	ırd fo	rm w	her	1 cos	x = -	- <u>2</u> ai	nd 9	0° <	< x <	< 18(:)°. :		• • •			••••
			$l \sin x$	and		x in	exa	et su	ırd fo	orm w	vher	1 COS	x = -	- <u>2</u> ai	nd 9	0° <	< x <	< 18()°.					• • • •
			$l \sin x$	and		x in	exac	ct su	ırd fo	orm w	rher	1 COS	<i>x</i> = -	$-\frac{2}{3}$ and $\frac{2}{3}$	nd 9	0° <	< x <	< 18()°.	· · · · · · · · · · · · · · · · · · ·				
			$1 \sin x$	and		x in	exac	et su	urd fo	orm w	vher	1 COS	<i>x</i> = -	- 2 aı	nd 9	0° -	< x <	< 18()°.					
			$1 \sin x$	and		x in	exac	et su	ırd fo	orm w	vher	1 COS	<i>x</i> = -	- ² / ₃ aı	nd 9	0° <	< x <	< 18()°.	• • • • • • •				
			l sin x	and		x in	exac	et su	ırd fo	orm w	vher		<i>x</i> = -	- <mark>3</mark> a)	nd 9	0° -	< x <	< 18()°.					
			l sin x	and		x in	exad	et su	ırd fo	orm w	rher		<i>x</i> = -	- ² / ₃ aı	nd 9	0° ·	< x <	< 18()°.					
			l sin x	and		x in	exad	et su	ırd fo	rm w	rher		<i>x</i> = -	$-\frac{2}{3}$ al	nd 9	0° -	< x <	< 18()°.					
				and		x in	exad	ct su	ırd fo	rm w	rher	1 COS	<i>x</i> = -	- ² / ₃ an	nd 9	0° <	< x <	< 180)°.					
			l sin x	and		x in	exad	ct su	ırd fo	rm w	rher	1 COS .	<i>x</i> = -	- ² / ₃ ai	nd 9	0° <	< x <	< 180)°.					
			l sin x	and		x in	exad	ct su	ırd fo	rm w	rher	1 COS .	<i>x</i> = -	- 23 au	nd 9	0° -	< x <	< 180)°.					
				and		x in	exad	ct su	ırd fo	rm w	rher	1 COS .	x = -	- 23 au	nd 9		< <i>x</i> <			HIGH	SCH	ÖÖL		



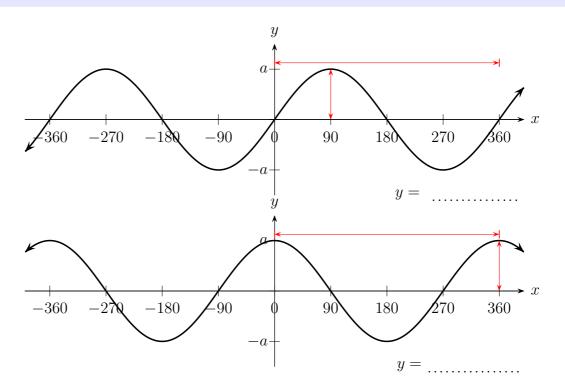
- 1. If $\sin \theta = \frac{4}{7}$ and $\tan \theta < 0$, find the exact value of $\cos \theta$ and $\tan \theta$.
- **2.** If $\sin x < 0$ and $\tan x = -\frac{5}{8}$, find the exact value of $\cos x$ and $\operatorname{cosec} x$.
- **3.** Given $\cos x = \frac{2}{5}$ and $\tan x < 0$, find the exact value of $\operatorname{cosec} x$, $\cot x$ and $\tan x$.
- 4. If $\cos x < 0$ and $\sin x < 0$, find $\cos x$ and $\sin x$ in surd form with a rational denominator if $\tan x = \frac{5}{7}$.
- 5. If $\sin \theta = -\frac{4}{9}$ and $270^{\circ} < \theta < 360^{\circ}$, find the exact value of $\tan \theta$ and $\sec \theta$.
- 6. If $\cos \theta = -\frac{3}{8}$ and $180^{\circ} < \theta < 270^{\circ}$, find exact values of $\tan x$, $\sec x$ and $\csc x$.
- 7. Given $\sin x = 0.3$ and $\tan x < 0$,
 - (a) Express $\sin x$ as a fraction.
 - (b) Find the exact value of $\cos x$ and $\tan x$.
- 8. If $\tan \alpha = -1.2$ and $270^{\circ} < \theta < 360^{\circ}$, find the exact values of $\cot \alpha$, $\sec \alpha$ and $\csc \alpha$.
- 9. Given that $\cos \theta = -0.7$, and $90^{\circ} < \theta < 180^{\circ}$, find the exact value of $\sin \theta$ and $\cot \theta$.

Source: Grove (2010, Ex 6.7)

Answers

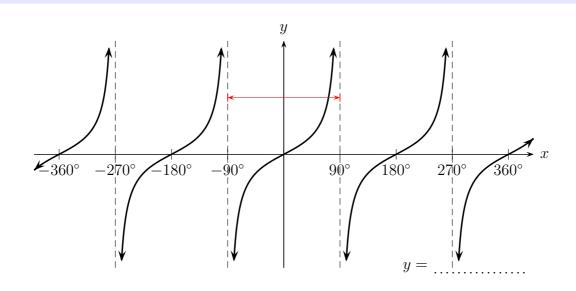
1. $\cos \theta = -\frac{\sqrt{33}}{7}$, $\tan \theta = -\frac{4}{\sqrt{33}}$ **2.** $\cos x = \frac{8}{\sqrt{89}}$, $\operatorname{cosec} x = -\frac{\sqrt{89}}{5}$ **3.** $\operatorname{cosec} x = -\frac{5}{\sqrt{21}}$, $\operatorname{cot} x = -\frac{2}{\sqrt{21}}$, $\tan x = -\frac{\sqrt{21}}{2}$ **4.** $\cos x = -\frac{7\sqrt{74}}{74}$, $\sin x = -\frac{5\sqrt{74}}{74}$ **5.** $\tan \theta = -\frac{4}{\sqrt{65}}$, $\sec \theta = \frac{9}{\sqrt{65}}$ **6.** $\tan x = \frac{\sqrt{55}}{3}$, $\sec x = -\frac{8}{3}$, $\operatorname{cosec} x = -\frac{8}{\sqrt{55}}$ **7.** (a) $\sin x = \frac{3}{10}$ (b) $\cos x = -\frac{\sqrt{91}}{10}$, $\tan x = -\frac{3}{\sqrt{91}}$ **8.** $\cos \alpha = -\frac{5}{6}$, $\sec \alpha = \frac{\sqrt{61}}{5}$, $\operatorname{cosec} \alpha = -\frac{\sqrt{61}}{6}$ **9.** $\sin \theta = \frac{\sqrt{51}}{10}$, $\cot \theta = -\frac{7}{\sqrt{51}}$.

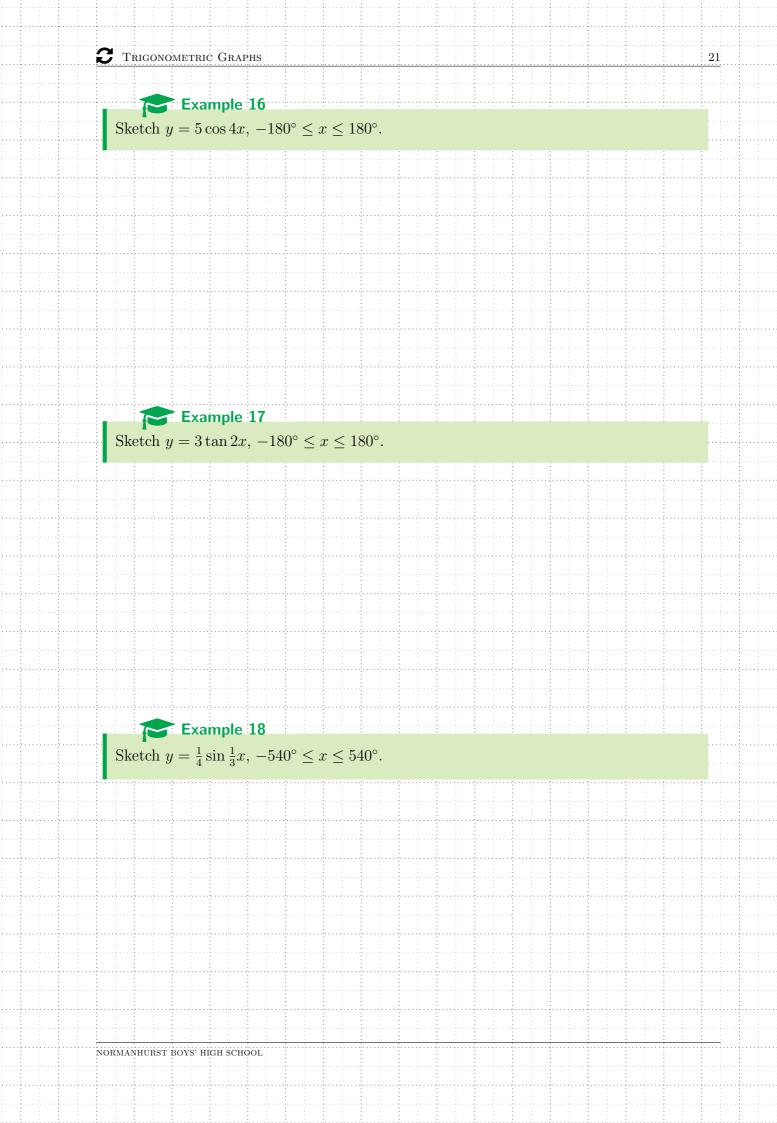
1.7 **C** Trigonometric Graphs


Definition 3

For $y = a \sin nx$ and $y = a \cos nx$:

- : distance between mean (equilibrium) position & peak/trough. Symbol:
- : number of complete appearances between 0° and 360°. Symbol:


.....


: the number of degrees before the graph repeats itself. Relationship:

Definition 4 For y = a tan nx: Symbol: symbol: number of complete appearances between -90° and 90°. Symbol: the number of degrees before the graph repeats itself.

- 1. Draw the graph of $y = 2 \sin x$, $-360^{\circ} \le x \le 360^{\circ}$. State the amplitude and period.
- **2.** Draw the graph of $y = 4 \cos x$, $-180^{\circ} \le x \le 180^{\circ}$. State the amplitude and period.
- **3.** Draw the graph of $y = \tan x$, $0^{\circ} \le x \le 360^{\circ}$.
- 4. Find the periods and amplitude (where necessary) of the following:

(a) $y = 3\sin 4x$ (b) $y = 5\cos 3x$ (c) $y = \tan 4x$ (d) $y = \tan 2x$

- **5.** Sketch the following graphs:
 - (a) $y = \sin 2x, 0^{\circ} \le x \le 180^{\circ}$
 - (b) $y = \cos 3x, 0^{\circ} \le x \le 120^{\circ}$
 - (c) $y = \sin 3x, 0^\circ \le x \le 360^\circ$
 - (d) $y = \cos 4x, 0^{\circ} \le x \le 180^{\circ}$
 - (e) $y = \sin \frac{1}{2}x, 0^{\circ} \le x \le 360^{\circ}$

(f)
$$y = \tan \frac{1}{2}x, 0^{\circ} \le x \le 180^{\circ}$$

(g)
$$y = \sin \frac{1}{3}x, 0^{\circ} \le x \le 270^{\circ}$$

- (h) $y = \cos \frac{1}{3}x, 0^{\circ} \le x \le 540^{\circ}$ (i) $y = \tan \frac{2}{3}x, -135^{\circ} \le x \le 135^{\circ}$
- (j) $y = 3\cos x, 0^{\circ} \le x \le 180^{\circ}$
- (k) $y = 5\cos x, 0^{\circ} \le x \le 360^{\circ}$
- (1) $y = -\cos x, 0^{\circ} \le x \le 360^{\circ}$
- (m) $y = -3\cos x, 0^{\circ} \le x \le 360^{\circ}$
- (n) $y = -2\sin x, 0^{\circ} \le x \le 360^{\circ}$

Section 2

Trigonometric identities and equations

EXAMPLE 1 Knowledge Transformations between $\sin^2 \theta$ to $\cos^2 \theta$ and $\sec^2 \theta$ to $\tan^2 \theta$

📽 Skills 👘

Manipulate expressions/solve equations involving these Pythagorean identities

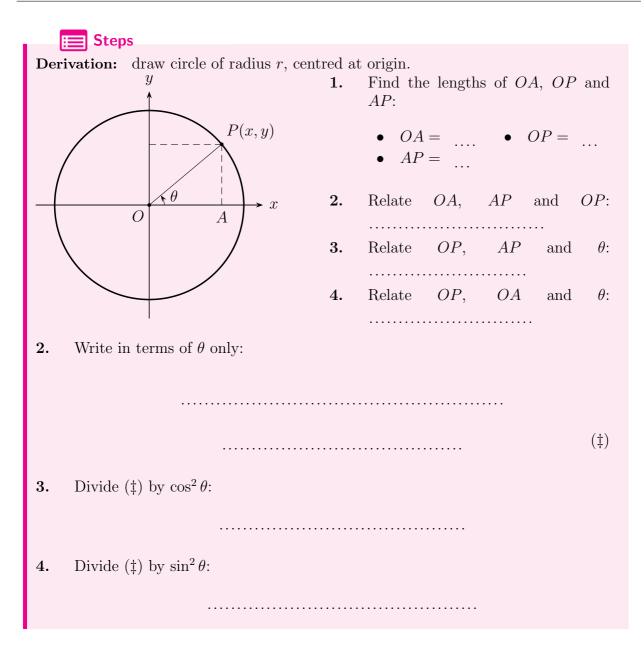
Vunderstanding

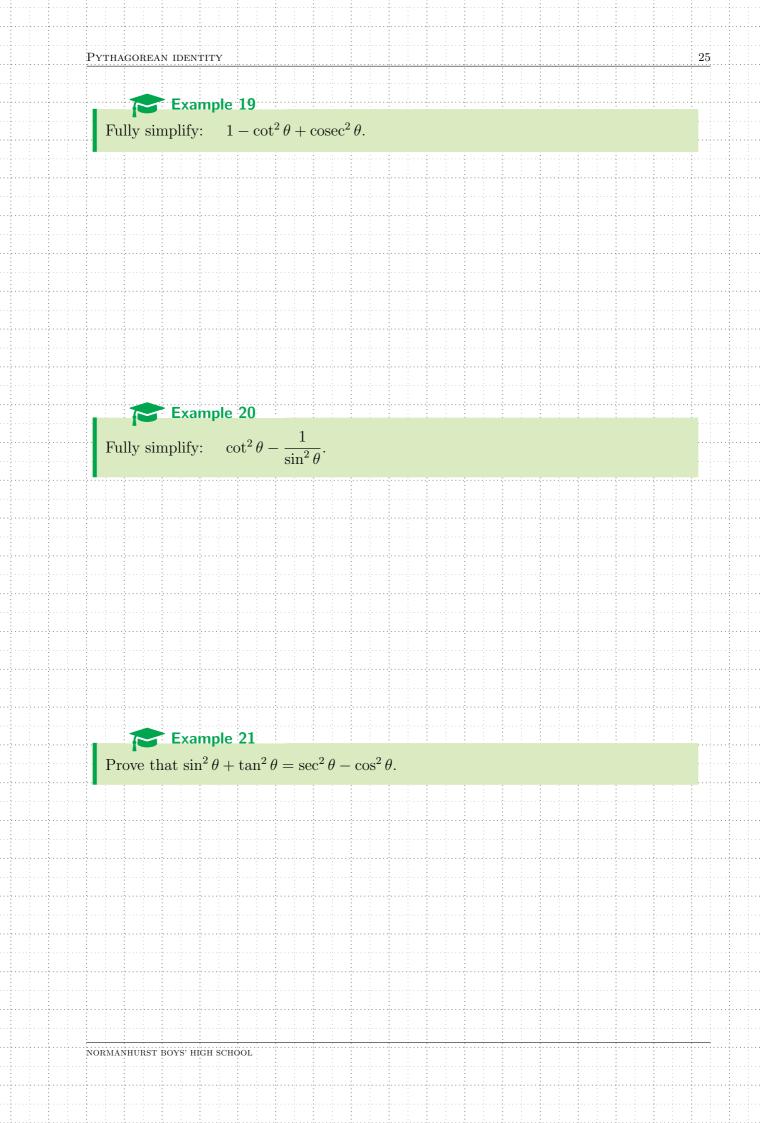
Difference between simplifying a trigonometric expression versus solving a trigonometric equation

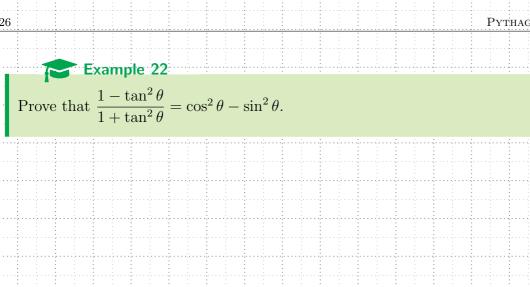
Solution By the end of this section am I able to:

4.10 Know the difference between an equation and an identity

4.11 Prove and apply the Pythagorean identities

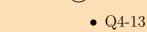

- 4.14 Prove trigonometric identities
- 4.15 Simplify trigonometric expressions and solve trigonometric equations, including those that reduce to quadratic equations


2.1 Pythagorean identity


Definition 5

The Pythagorean identity:

.....



Further exercises

(A) Ex 5G • Q3-8 last 2 columns

x1 Ex 6G

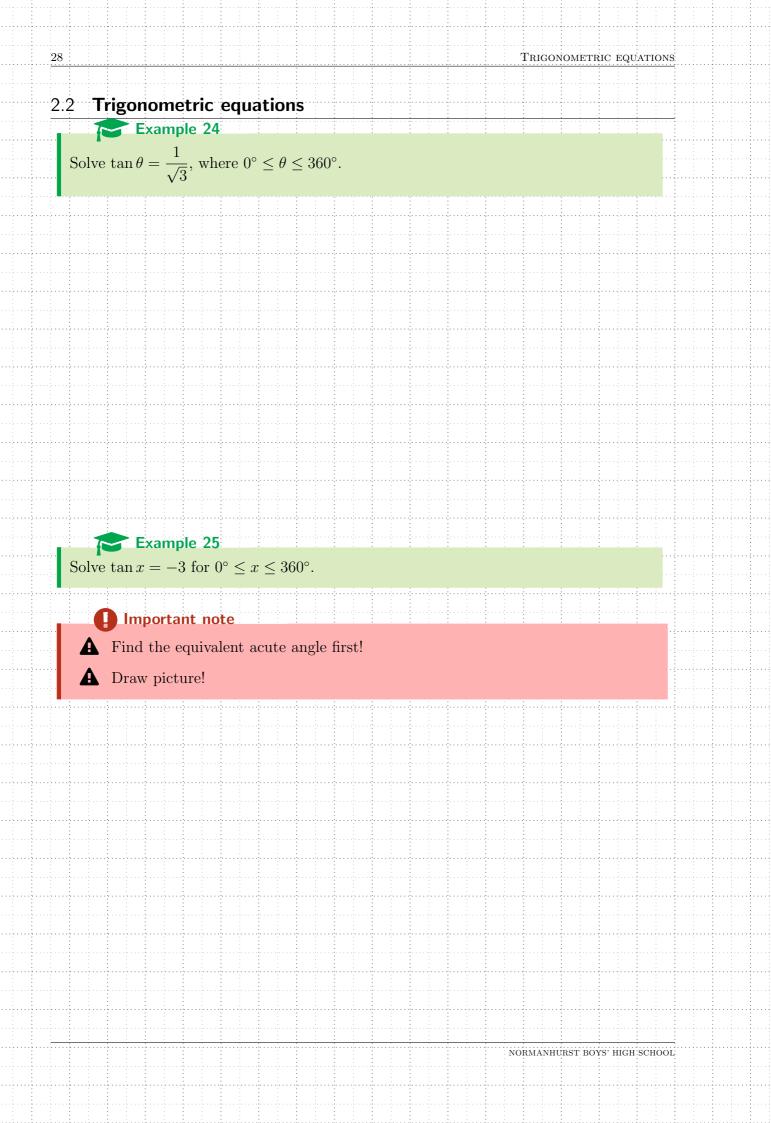
• Q15-16

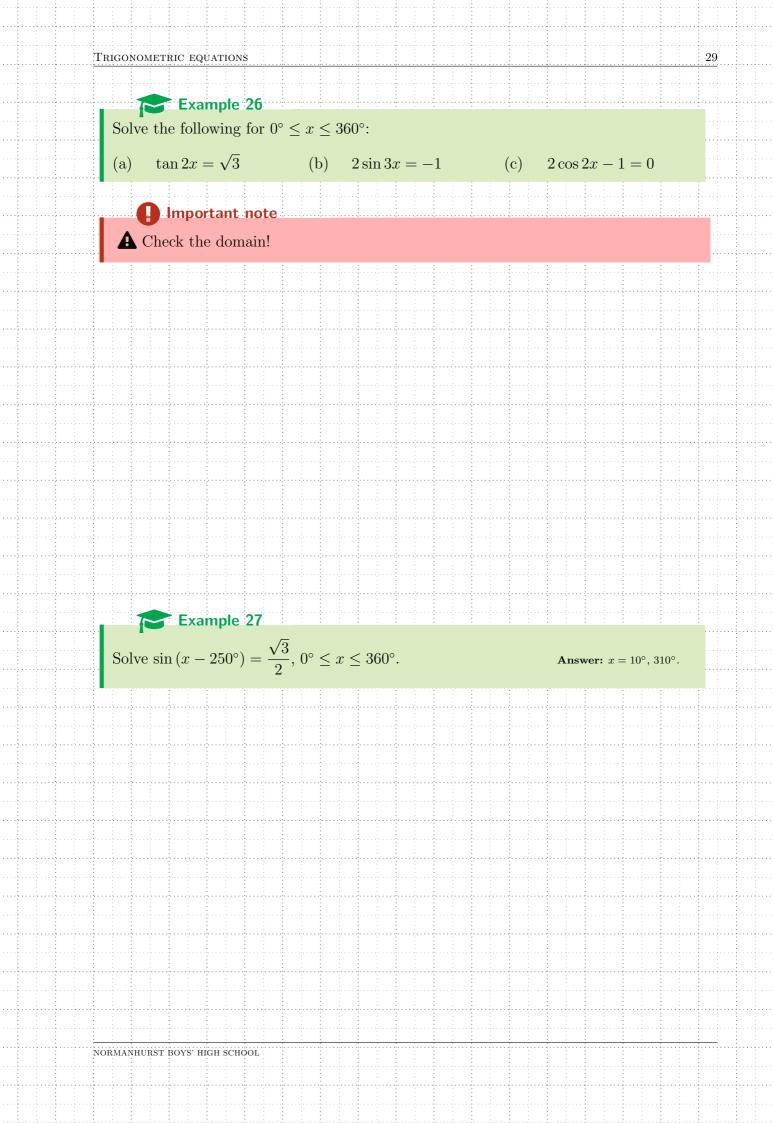
NORMANHURST BOYS' HIGH SCHOOL

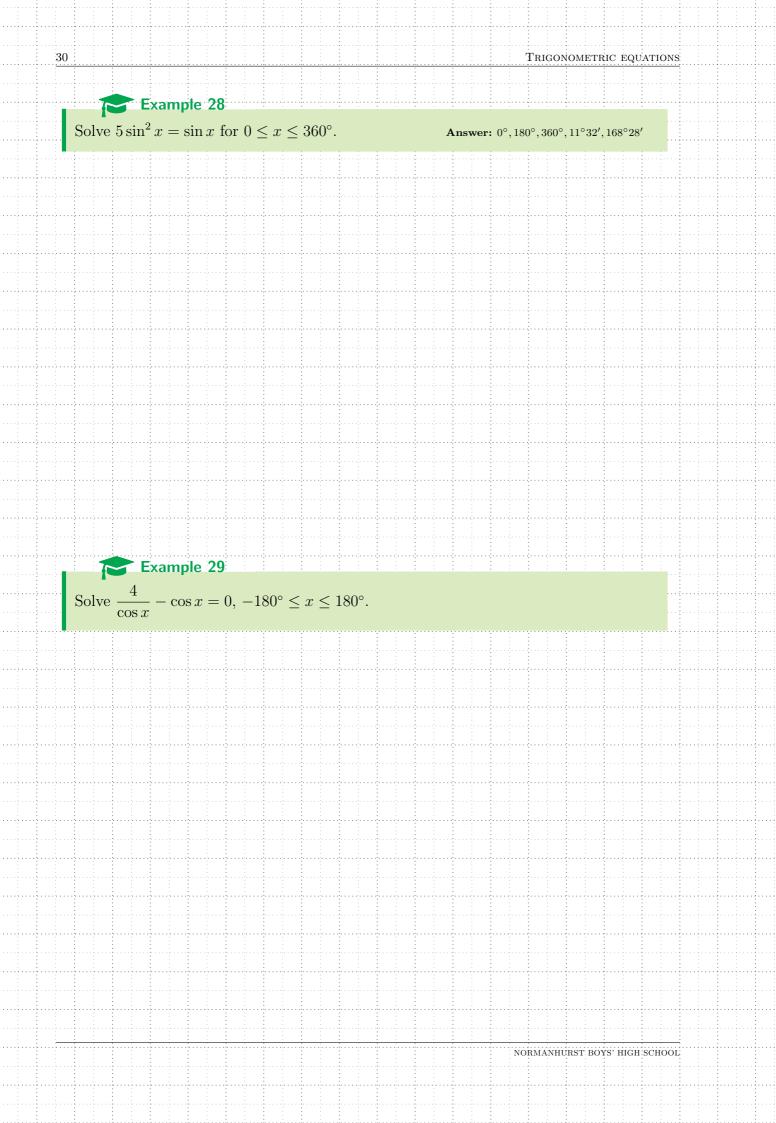
2.1.1 Elimination of θ

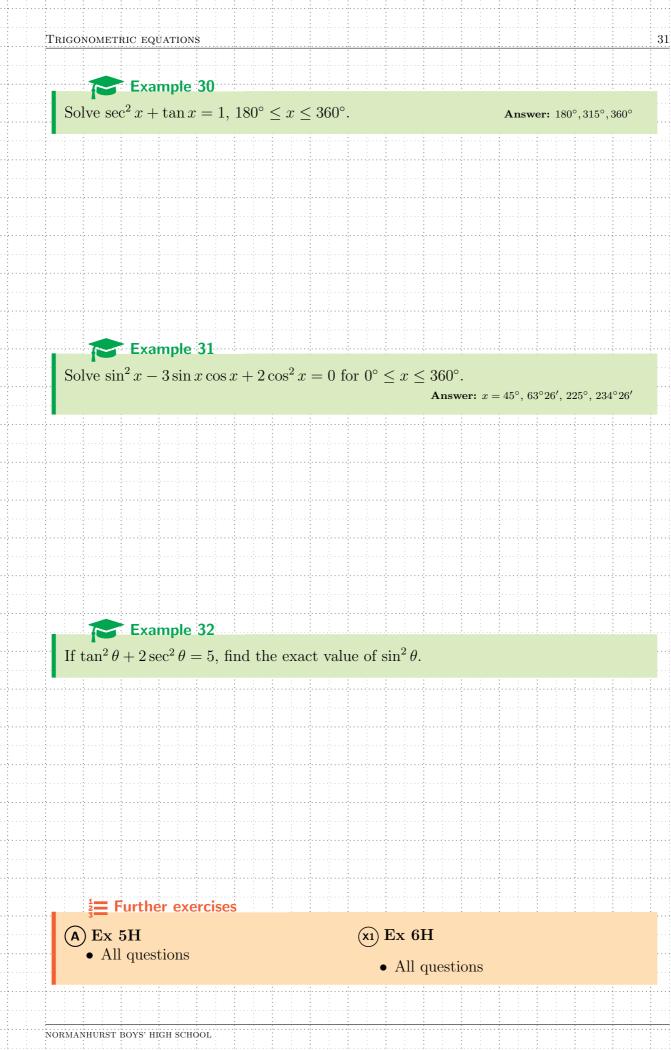
- **1.** Change subject to $\sin \theta$ or $\cos \theta$, whichever is appropriate.
- **2.** Use Pythagorean Identity to remove θ .

Example 23

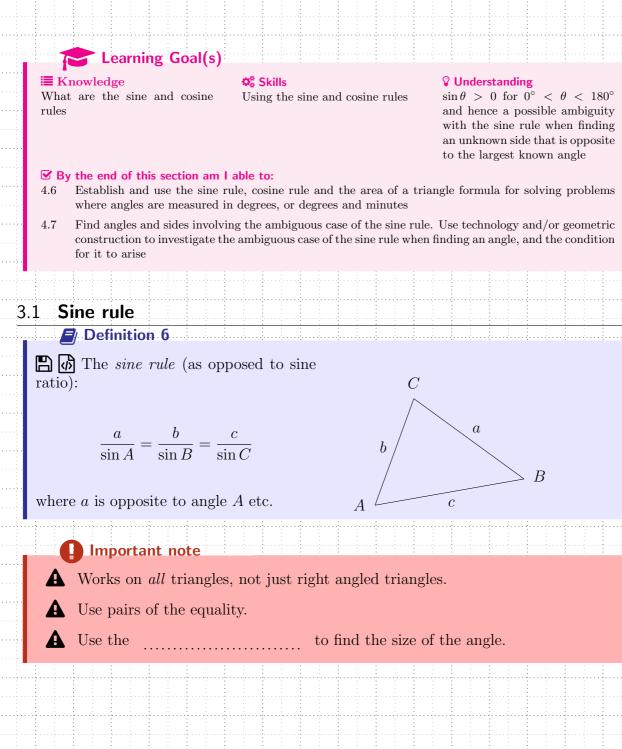

Eliminate θ from the following pair of equation, and describe the graph:

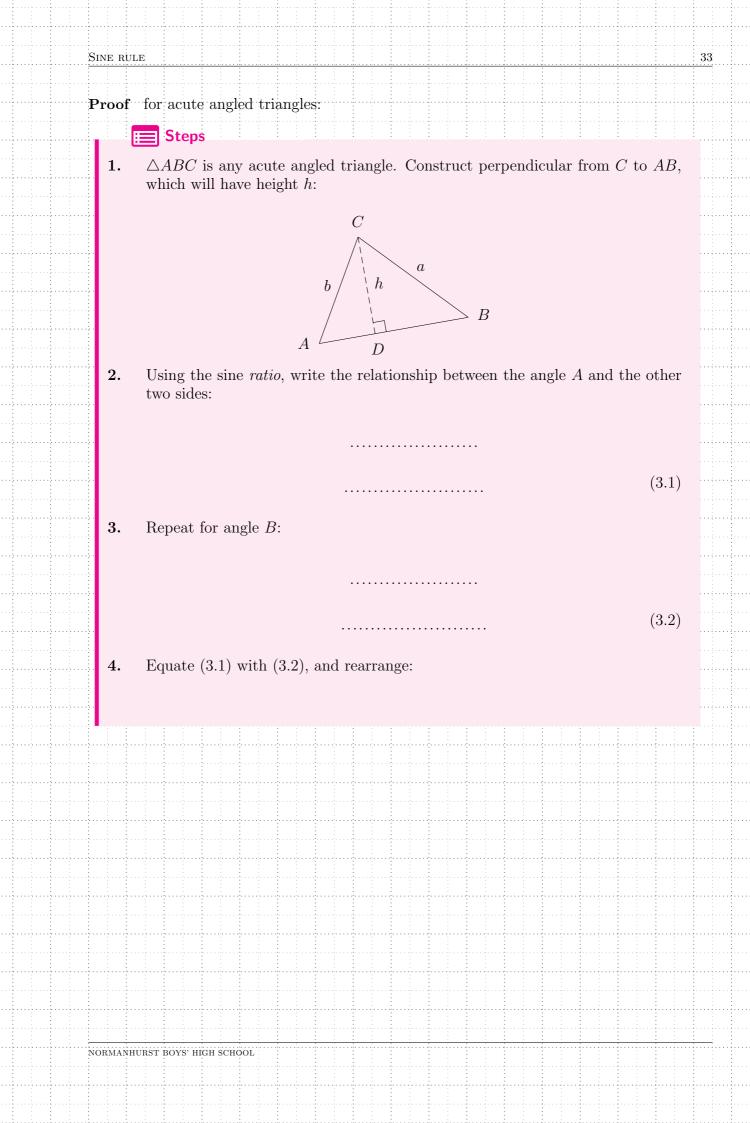

 $\begin{cases} x = 4 + 5\cos\theta\\ y = 3 - 5\sin\theta \end{cases}$

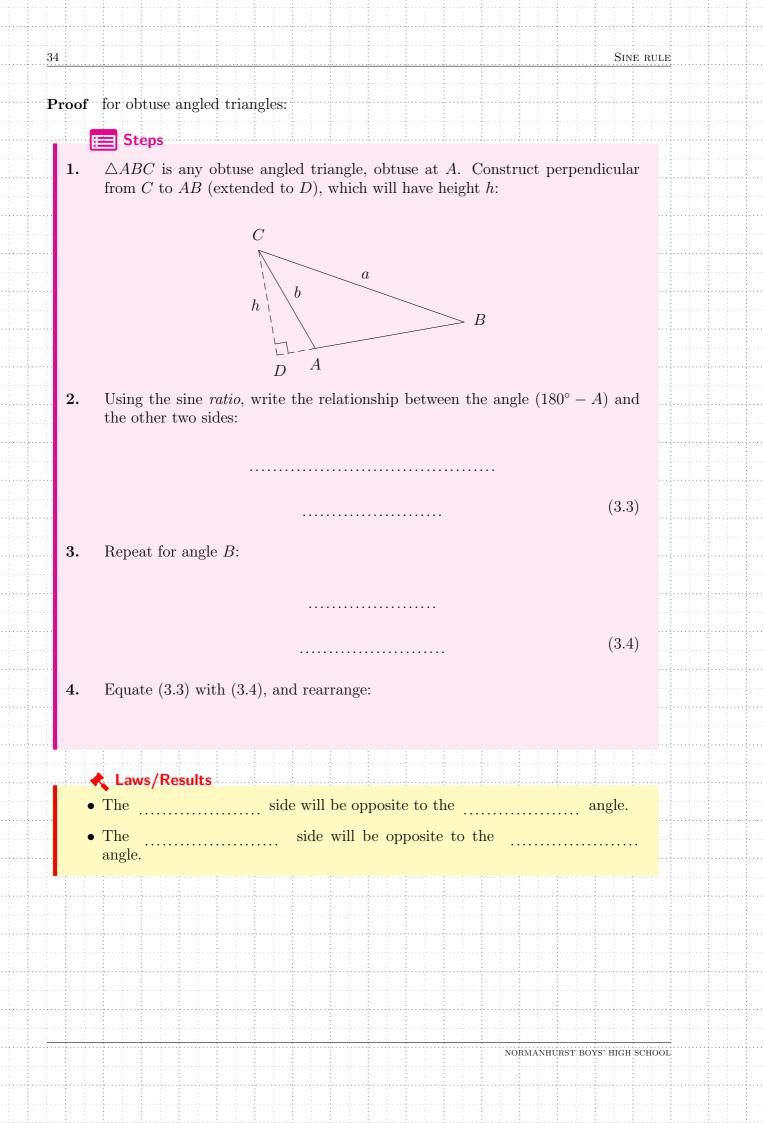

Further exercises

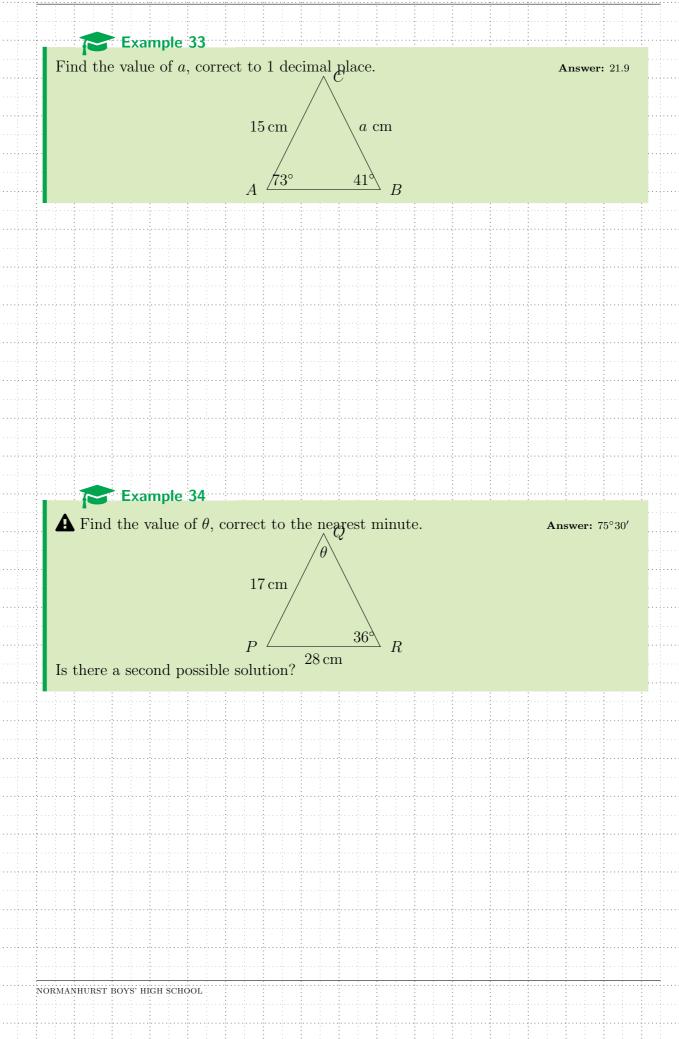

Ex 6G • Q14, 17-18

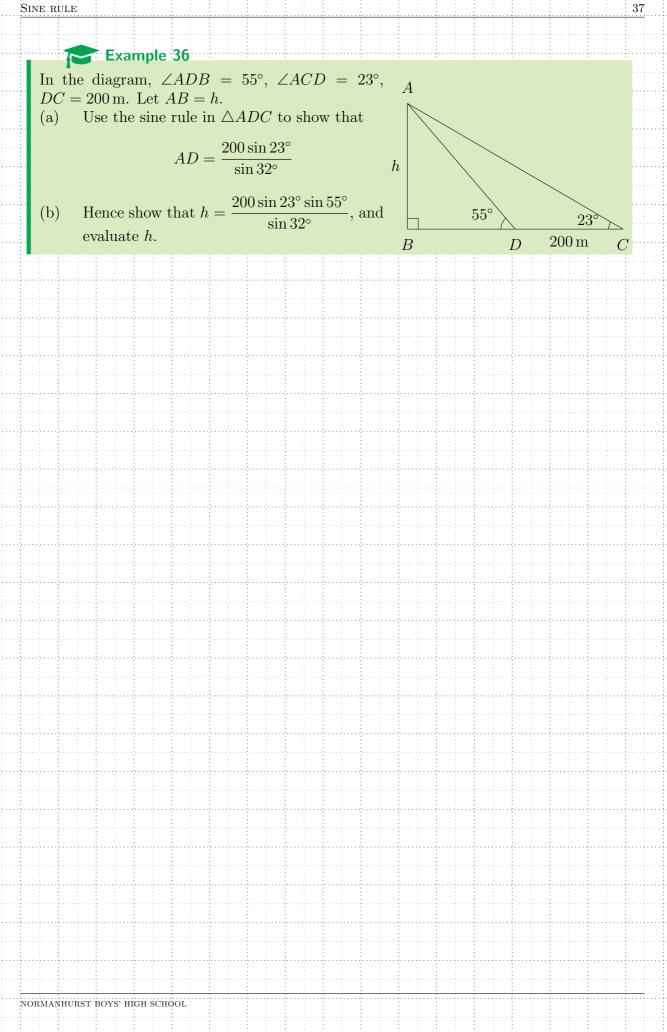
NORMANHURST BOYS' HIGH SCHOOL

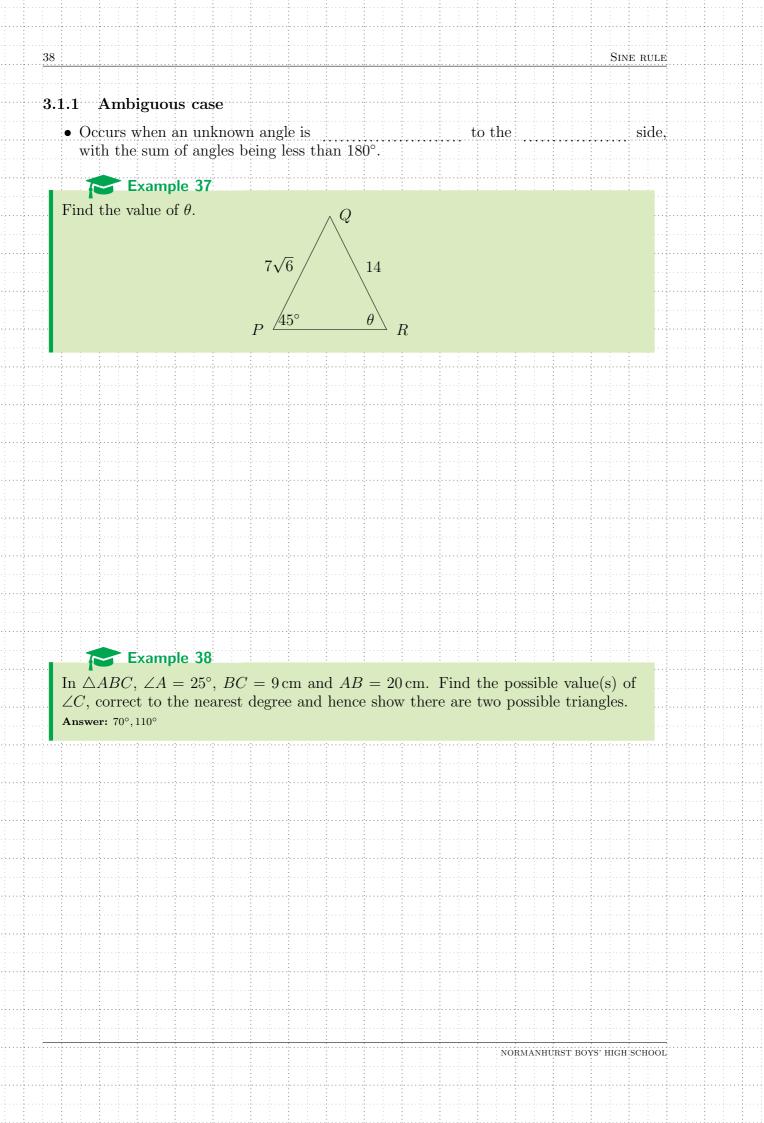


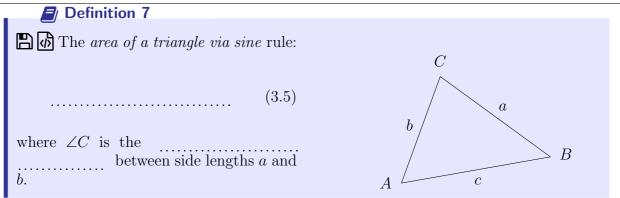



Section 3

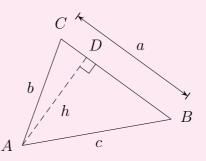

Non right-angled trigonometry

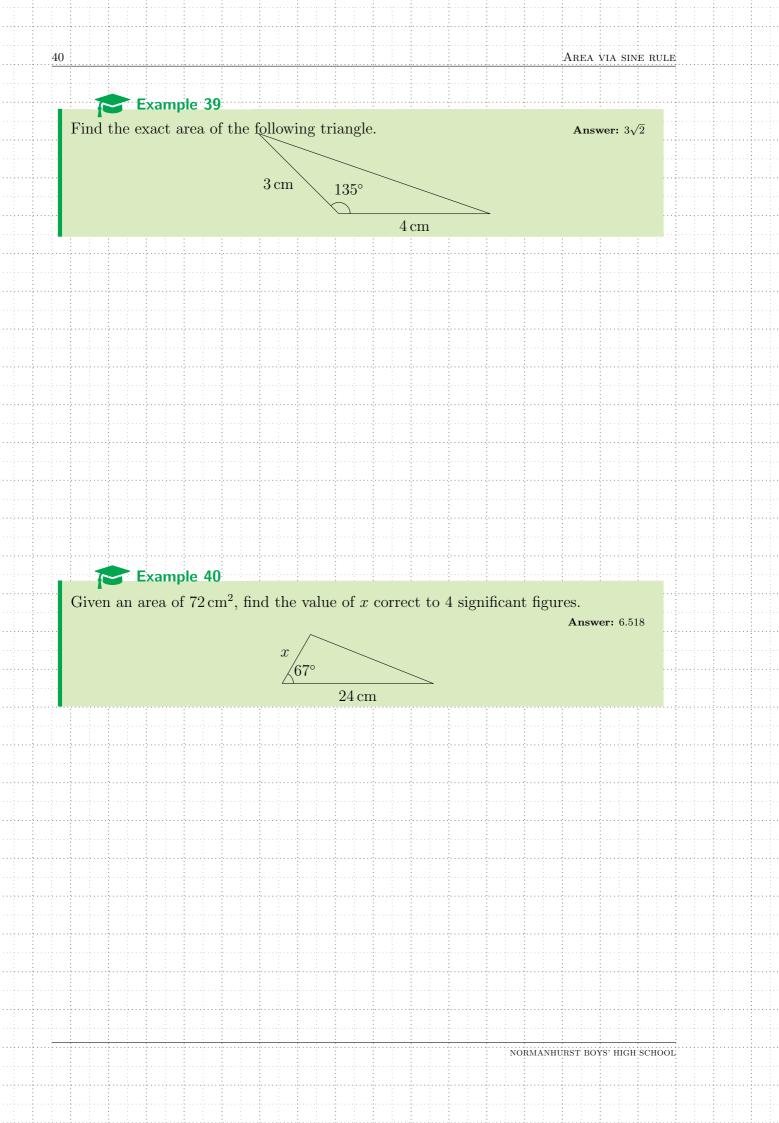

32

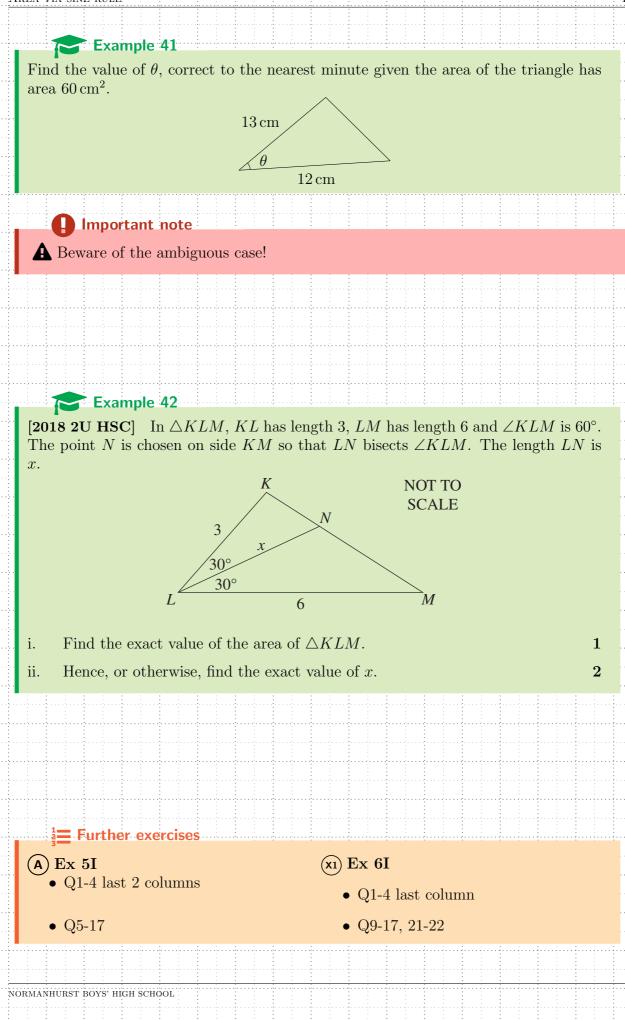




A plane flew 160km from P to Q on a bearing of 200°. It then turned and flew 225 km to R, which is due west of P. Find, correct to the nearest degree, the bearing Answer: 132°				7		E	xai	mp	le	35	•			· · · · · ·			•				• • • • • • • •																	•••
225 km to <i>R</i> , which is due west of <i>P</i> . Find, correct to the nearest degree, the bearing Answer: 132"		А	р	la	ne	fle	ew	16	0 kr	n :	fro	m	P	to	Q	on	a	be	ari	ng	of	20	0°.	It	tł	nen	tı	ırn	ed	an	d i	flev	V					
		22 of	25 : 7	kr) f	n t roi	io İ m	R, י R	whi	ich	is	du	e w	rest	; of	f P	. F	inc	l, c	orr	ect	t to	o th	le n	ea	rest	t de	egr											
	•••	:	. \q	; 1	101				: :		:	: :			:		:		:		:			:		:			АП	.5 W (er: .	132			 			• • •
																					·····								• • • • •									•••
											• • • •						•				• • • •														 			
										• • • • •																												
																													•••••						 			• • •
							- - - -				-										- 														 			
																	· · · · · · ·																					
																		: 							•••••		• • • • •		•••••						 			•••
	· ; · · · ·		· · : : · ·																										•••••						 			•••
							•				: : : :																											
																					: :														 			•••
			••••••																							•••••			•••••							••••		
			•••••								 																											•••
																									•••••										 			•••
											* * * * *										* * * * *																	
	•••••		· • • • •				• • •				• • • •			•••••							• • • • • • • • •				•••••	• • • • •	• • • • •								 			•••
	•		••••••																						•••••										 			
											· · · · · · ·										· · · · · · ·														 			
											• • • • •						• • • •				• • • • •														 			
	•••••		••••••	••••										- 			: :								•••••	· · · · · ·			•••••						 •••••	••••	•••••	•••
			· · · · ·) 	· · · · ·			• • • • •	· · · · · · · · · · · · · · · · · · ·					· · · · ·	 				· · · · · · · ·				•••••		• • • • •		•••••						 			
											• • • • •						• • • • •				• • • • •					• • • • •									 			
	•••••	· · · · ·	••••••	,	• • • •						· • • • •										· • • • •				•••••	• • • • •	• • • • •		•••••	• • • • •					 • • • • • •	••••		•••
							-				- - - - -						- - - -				- - - - -																	
						· · · · · ·	* * * * *				*			· · · · · ·			· · · · · · ·			-	· · · · · · ·						• • • • •		• • • • • •			· · · · · · ·			 			•••
			•••••																																 			• • •
						· · · · · · ·	*****				•			· · · · ·			•					· · · · · ·																•••
							• · · · · · · · · · · · · · · · · · · ·				• • • • •						* * *				• • • • • • • • • •					• • • •												
			•••••••				- - - - -				•						•				• • • •					•												•••
							•							· · · · ·																								
							•				•						• • • •				•																	
NORMANHURST BOYS' HIGH:SCHOOL						· · · · · ·	****				•			· · · · · ·			• • • • •				••••••••••••••••••••••••••••••••••••••	· · · · · ·				NOI	RMA	NHU	RST	воу	′Ѕ'Н	IGH	SCH	OOL				•••

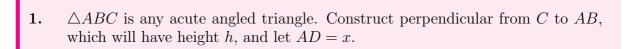

3.2 Area via sine rule

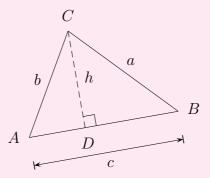

Proof (valid for acute or obtuse-angled triangles)


📃 Steps

1. $\triangle ABC$ is any triangle. Construct perpendicular from A to BC, which will have height h:

2. In $\triangle ADC$, use the sine *ratio* to write the relationship between the angle C and the other two sides:

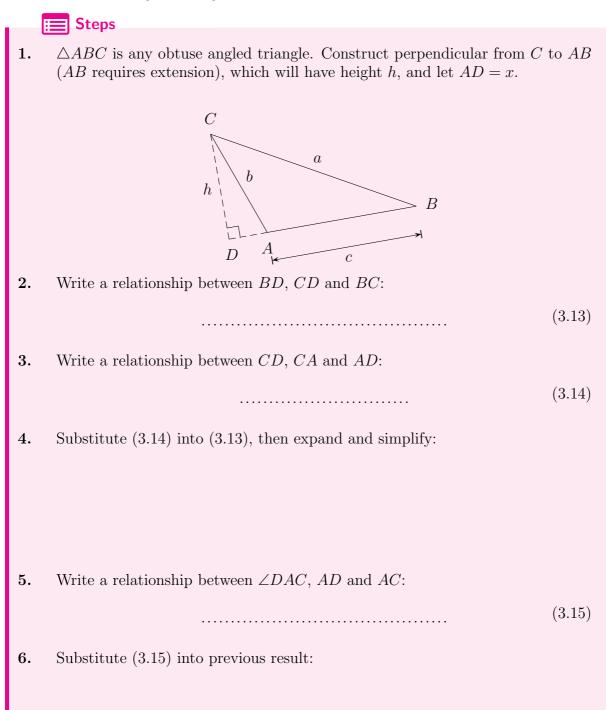


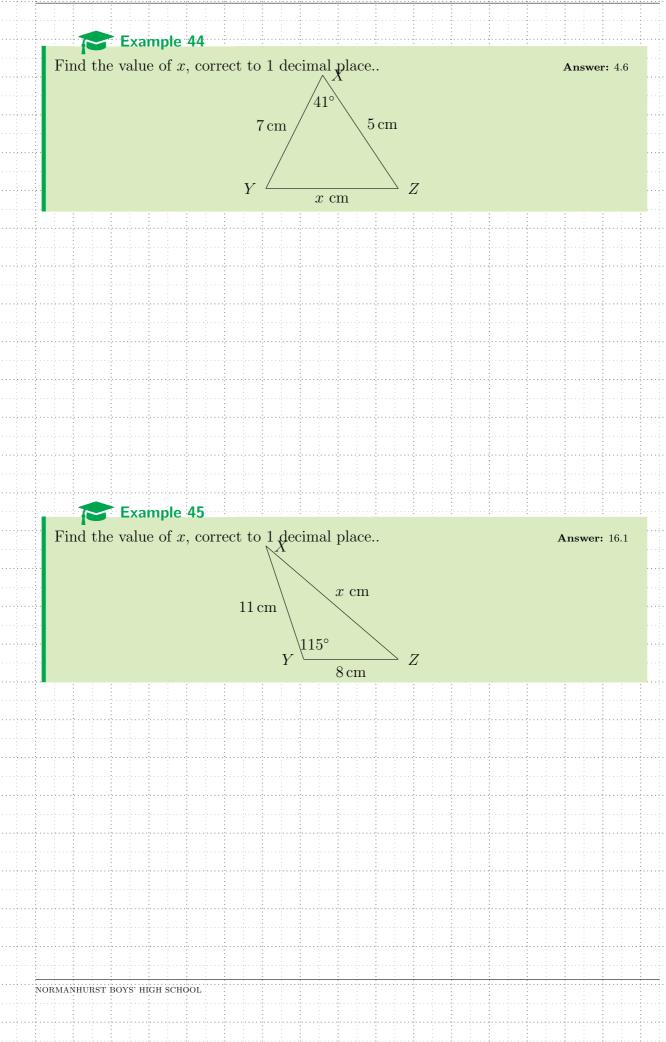


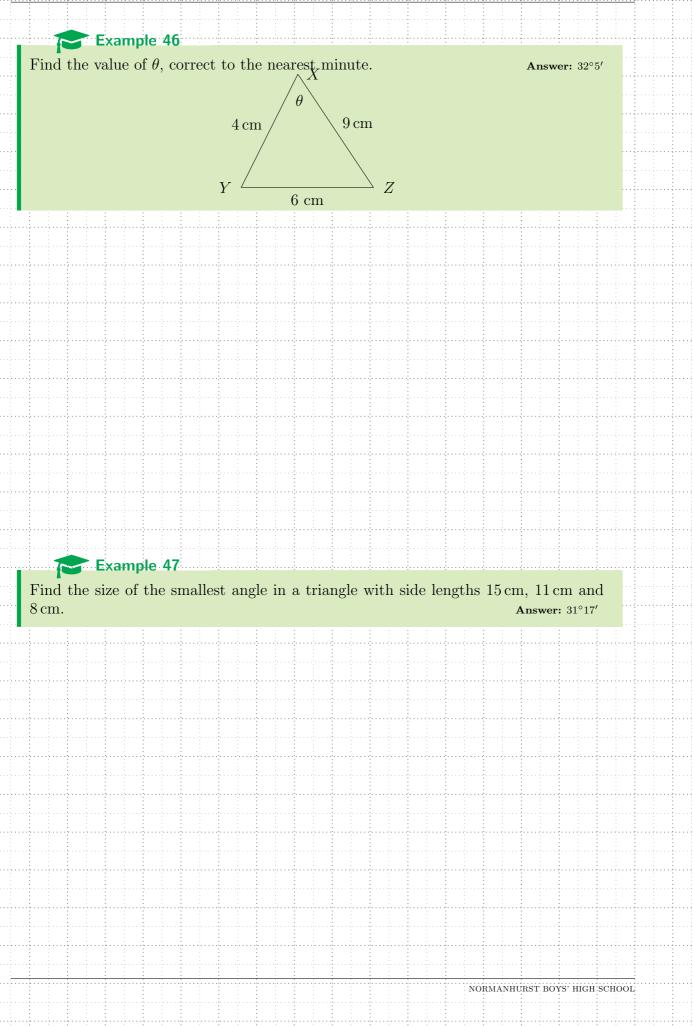
42	2 COSINE RU											
_												
3.	3 Cosine rule											
	Definition 8											
	cosine ratio): C											
	b/											
	(3.8) (3.8)											
	$A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											
	(3.9)											
· · · ·	where a is opposite to angle A etc.											
····.												
	Important note											
	• Works on <i>all</i> triangles, not just right angled triangles.											
	• Used to find											
	– an when all are known											
	(Equation (3.9)), or											
	- a, when two other and the included are known (Equation											
	and the included $are known$ (Equation (3.8)).											
•••••	(3.8)).											
	Example 43											
	Without using a calculator, find the value of											
	(a) z if in $\triangle XYZ$, $x = 2$, $y = 5$ and $\cos Z = \frac{4}{5}$.											
	(b) $\cos B$ if in $\triangle BCD$, $b = 5$, $c = 6$ and $d = 7$.											
	Answer: (a) $\sqrt{13}$ (b) $\frac{5}{7}$											
• • • • • • •												
	NORMANHURST BOYS' HIGH SCHO	ÖL										
	NORMANHURST BOYS' HIGH SCHO	OE										

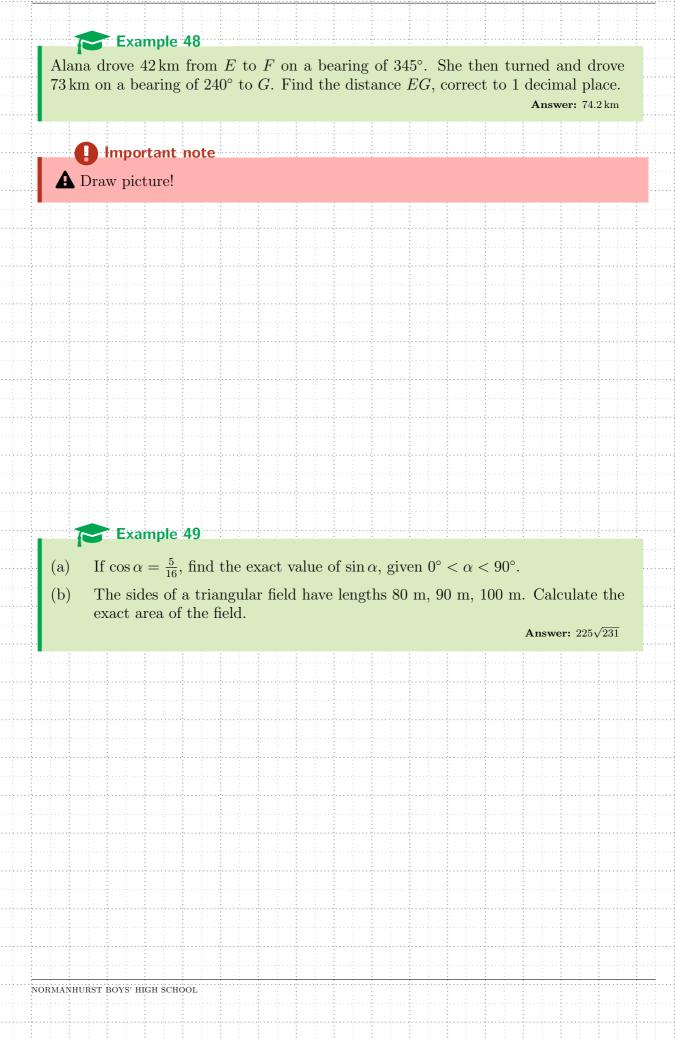
Proof for acute angled triangles:

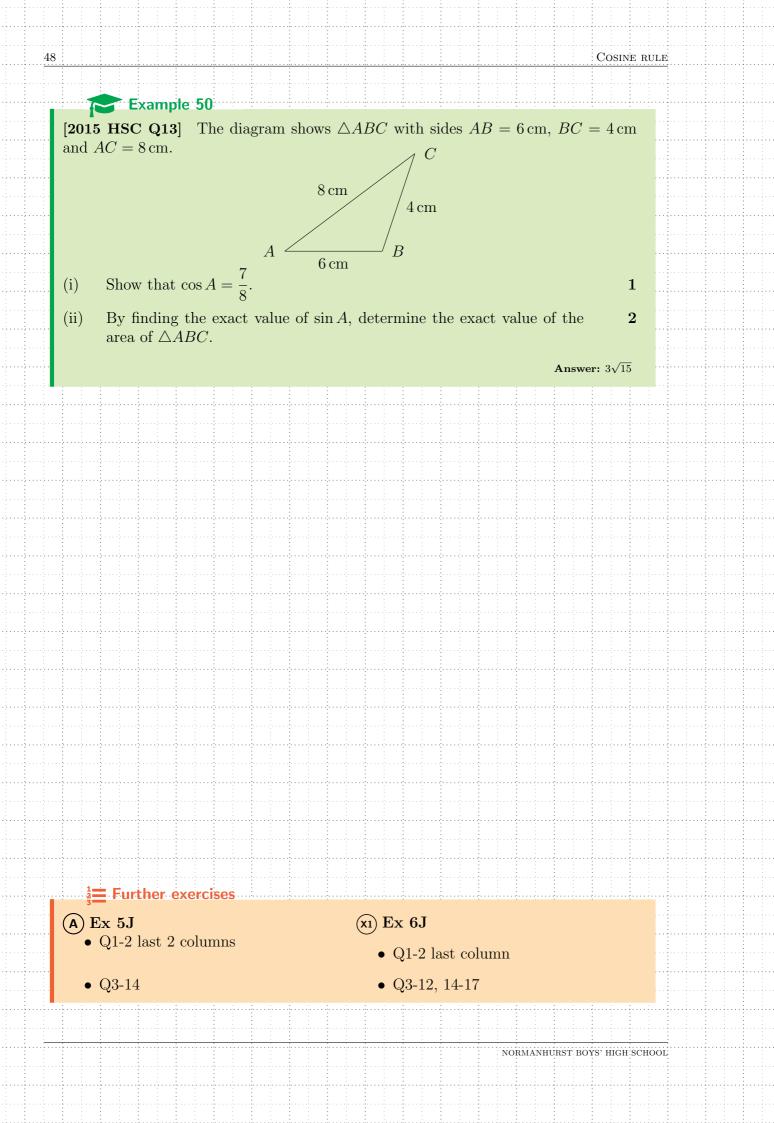
Steps

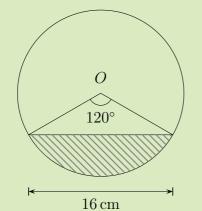



2. Write a relationship between *BD*, *CD* and *BC*:


- (3.10)
- **3.** Write a relationship between *CD*, *CA* and *AD*:(3.11)
- 4. Substitute (3.11) into (3.10), then expand and simplify:


Proof for obtuse angled triangles:

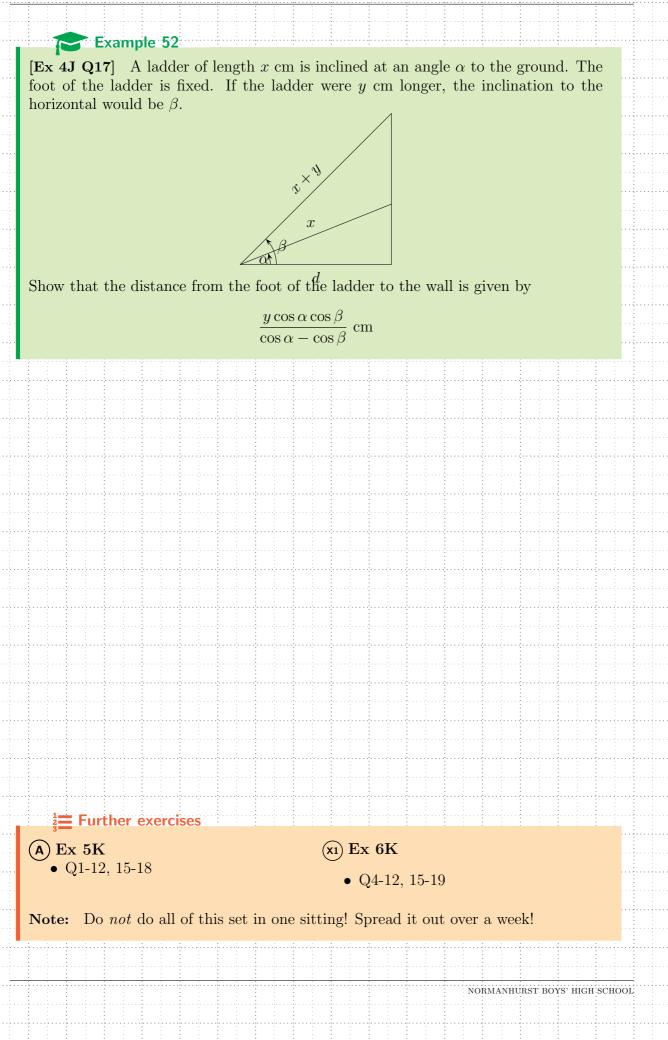




3.4 General problem solving

Example 51

The surface of the water in a horizontal pipe is 16 cm wide and subtends an angle of 120° at the centre of the pipe, as shown.


Find, as an exact value:

- (a) The distance from the centre of the pipe to the water surface.
- (b) The diameter of the pipe.
- (c) The maximum depth of the water.

Answer: (a) $\frac{8}{\sqrt{3}}$ (b) $\frac{32}{\sqrt{3}}$ (c) $\frac{8}{\sqrt{3}}$

49

NORMANHURST BOYS' HIGH SCHOOL

Section 4

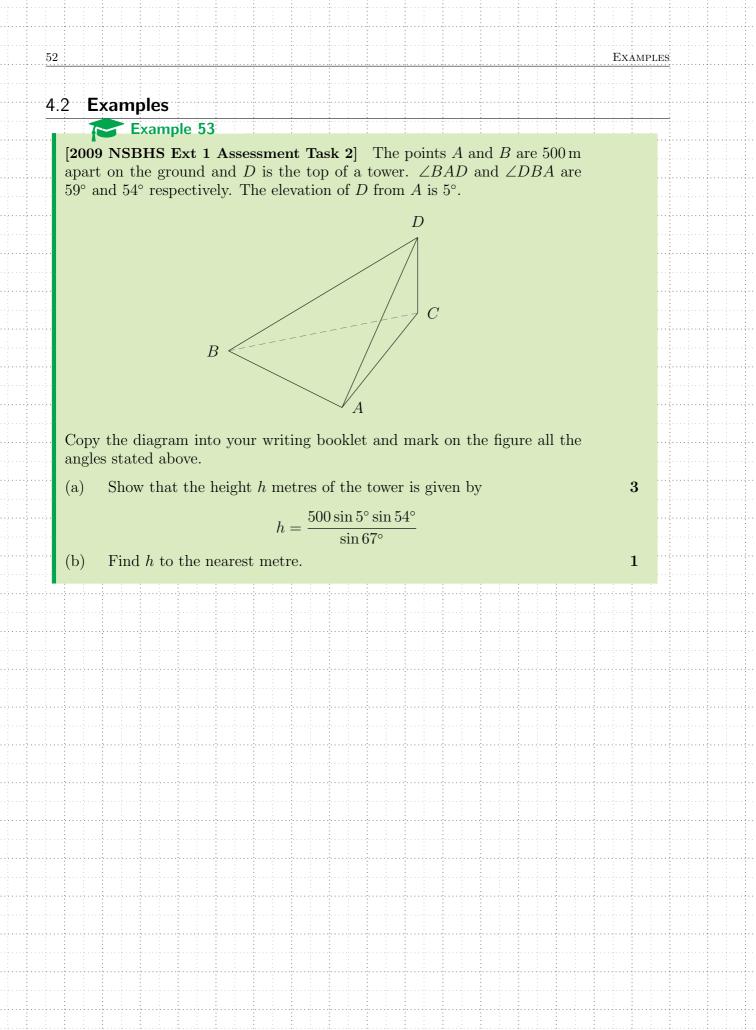
3D Trigonometry

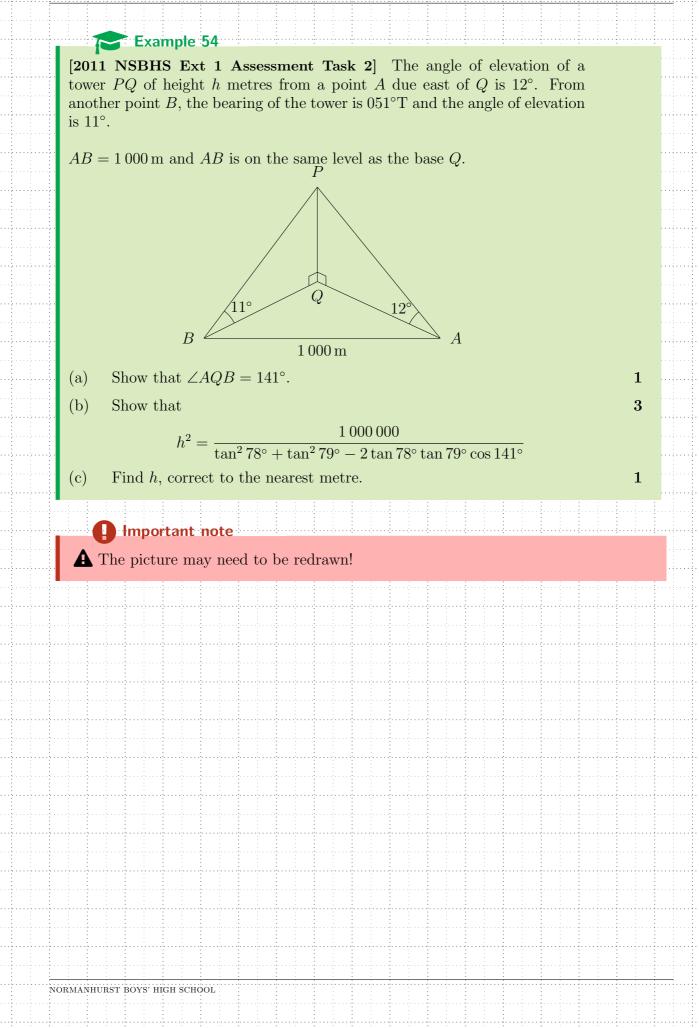
Learning Goal(s)

By the end of this section am I able to:

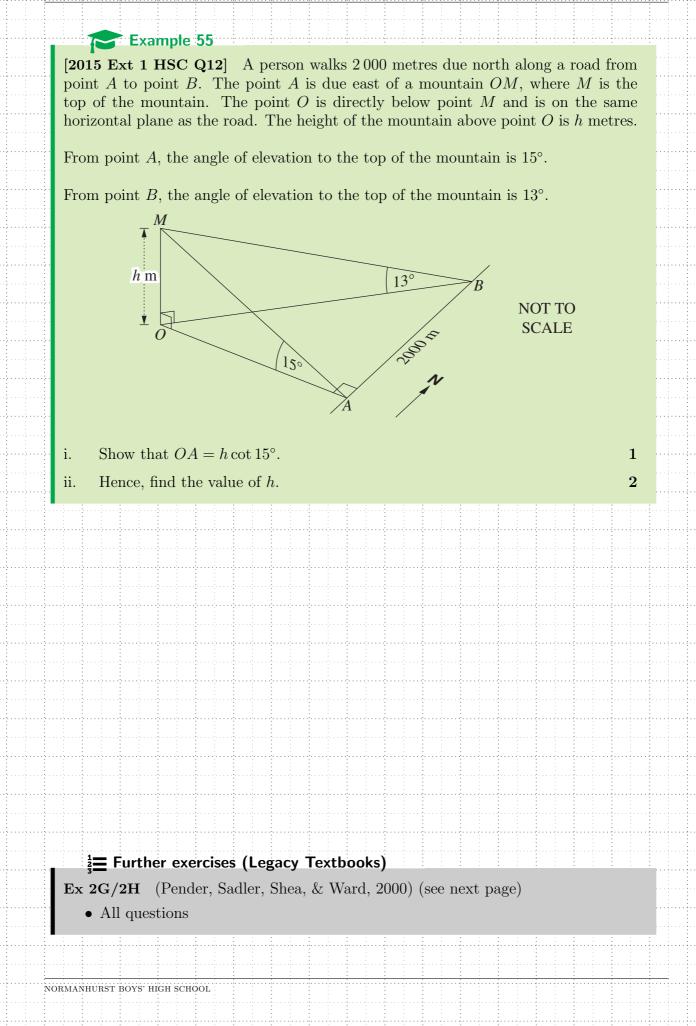
EXAMPLE 1 Knowledge Using right angled triangles, non right angled triangles and bearings to assist with problem solving 🗘 Skills

Splitting particular planes into triangles for ease of calculation

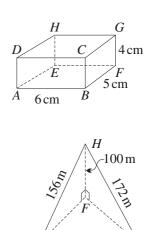

Vunderstanding

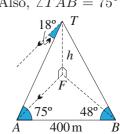

Some right angles may look awkward when drawn on a 2D sheet of 'paper'

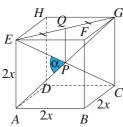
4.9 Solve problems involving the use of trigonometry in two and three dimensions


4.1 **Techniques required**

- Reproduce diagram on to working paper.
- Mark on your own diagram, the measurements provided.
- Where necessary, draw NSEW axes for bearings.
- Use sine/cosine rules sparingly and only when necessary. (Right angled trigonometry)
- Look for
 - Right angles
 - Complementary/supplementary angles
 - Isosceles/equilateral triangles

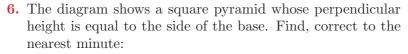



				:										:		:					:		-					:					
	54																						-			Ex/	AMP	LES				-	
			 	·····	<u></u>	· · · · ·				<u></u>			<u></u>				<u></u>		<u></u>		<u></u>	<u></u>	<u></u>		<u></u>				•••••	••••			
	 			••••																	••••								· · · · : : :	••••	:		
	 		 	••••	•••••	•••••			 				• • • • • •		•••••		•••••						 :					•••••	•••••	• • • • • • • •			
																							<u>.</u>		· · · · · ·			· · · · · ÷					
	 		 						 																				· · · · · · ·				: :
																							<u>.</u>										
				:		-			-		-							-			:		-					-		:		-	
	 			:																	:									:			
	 		 	•••••	•••••	•••••			 	•••••					•••••		•••••											•••••	i.	••••			
	 																				••••												
	 		 	· · · · ÷	· · · · ÷	•••••			 •••••	•••••			•••••		· · · · ÷						· · · ÷		÷····					· · · · {		· · · .	·		
	 		 			:;			 																:			;		.			: :
																-					:									:			
																														:			
• • •	 		 	•••••	•••••				 	· · · · · · · · · · · · · · · · · · ·	÷		•••••		•••••		•••••					••••						•••••	••••	· · · · · · · · · · · · · · · · · · ·	• • • • • •	: :	; :
••••	 		 	· · · · .	•••••	••••	•••••		 	•••••			•••••		•••••		•••••	•••••			· · · ÷							•••••	· · · ·	••••	• • • • • •		
	 		 		: ;			: :;	 	· · · · ·													; ;	: 	: : :								: :
																							<u>.</u>										:
				:																										:			
																														:			
																													•••••	••••			
											•••••																	•••••					
••••	 		 	•••••	•••••	•••••	·····		 	•••••			•••••	••••	•••••		•••••				··· •	••••	 :	() [•••••	••••	••••	• • • • • •		
				• • • • •				•••••																						• • • • • • •			
	 	•••••	 	•••••	•••••		•••••		 	•••••	•••••		•••••		•••••		•••••					••••						•••••	· · · ·	• • • • • • • •	•		
	 		 						 																								: : :
																							ļ										
	 																						<u>.</u>					;					
																							-		· · ·					:			
				:		-		:						-							:		-							:			
••••				•••••		•••••									•••••		•••••	•••••			••••		:					•••••	•••••	••••		:	
				:																								•••••		· · · · · · · · · · · · · · · · · · ·		: :	
••••	 		 	•••••	· · · · •		· · · · · · · · · · · · · · · · · · ·		 	•••••			· · · · · ·		· · · · ·		· · · · · ;					••••		:			•••••	•••••	••••	••••	• • • • • • •		: :
				• • • • •																								•••••					
••••	 	• • • • •	 	••••	•••••	····;	••••	•••••	 •••••			•••••	•••••		•••••		•••••	•••••		• • • • • •	••••					•••••		•••••	••••	••••	• • • • • •		
				••••																			ł										
	 		 						 	•••••			•••••		•••••		· · · ·								: 	···· ;		· · · · · {	· · · · .				: :
	 																								:								
	 		 						 														<u>.</u>							· · · ·			: :
																												· · · · · ;	••••				
	 																													• • • • • • • • • • • • • • • • • • • •			· · · ·
	 		 	•••••	••••	•••••	•		 • • • • •	· · · · · · · · · · · · · · · · · · ·			•••••				• • • • •				••••							•••••	••••	••••	• • • • • •		
	 			• • • •																													
	 		 		•••••	•••••			 •••••	· · · · · · · · · · · · · · · · · · ·			•••••				•••••	•••••										•••••	•••••		· · · · · ·		
				• • • • •												•							<u>.</u>						· · · · :				
	 		 	····;	•••••	•••••			 												NOP	MANHU	IBST	BOY	/S' П	ЮН	SCH	001	••••	· · · · .	·		
																•		•						101	л	.011	5010		<u>.</u>				
																																	:



Exercise 2G

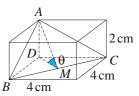
- 1. The diagram shows a box in the shape of a rectangular prism.
 - (a) Find, correct to the nearest minute, the angle that the diagonal plane AEGC makes with the face BCGF.
 - (b) Find the length of the diagonal AG of the box, correct to the nearest millimetre.
 - (c) Find, correct to the nearest minute, the angle that the diagonal AG makes with the base AEFB.
- 2. A helicopter H is hovering 100 metres above the level ground below. Two observers P and Q on the ground are 156 metres and 172 metres respectively from H. The helicopter is due north of P, while Q is due east of P.
 - (a) Find the angles of elevation of the helicopter from P and Q, correct to the nearest minute,
 - (b) Find the distance between the two observers P and Q, correct to the nearest metre.
- **3.** The points A and B are 400 metres apart in a horizontal plane. The angle of depression of A from the top T of a vertical tower standing on the plane is 18° . Also, $\angle TAB = 75^{\circ}$ and $\angle TBA = 48^{\circ}$.
 - (a) Show that $TA = \frac{400 \sin 48^{\circ}}{\sin 57^{\circ}}$.
 - (b) Hence find the height h of the tower, correct to the nearest metre.
 - (c) Find, correct to the nearest degree, the angle of depression of B from T.
- 4. The diagram shows a cube ABCDEFGH. The diagonals AG and CE meet at P. Q is the midpoint of the diagonal EG of the top face. Suppose that 2x is the side length of the cube and α is the acute angle between the diagonals AG and CE.
 - (a) State the length of PQ.
 - (b) Show that $EQ = \sqrt{2}x$.
 - (c) Hence show that $EP = \sqrt{3}x$.
 - (d) Hence show that $\cos \angle EPQ = \frac{1}{3}\sqrt{3}$.
 - (e) By using an appropriate double-angle formula, deduce that $\cos \angle EPG = -\frac{1}{3}$, and hence that $\cos \alpha = \frac{1}{3}$.
 - (f) Confirm the fact that $\cos \alpha = \frac{1}{3}$ by using the cosine rule in $\triangle APE$.
 - (g) Find, correct to the nearest minute, the angle that the diagonal AG makes with the base ABCD of the cube.

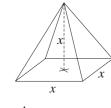


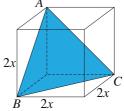
2012

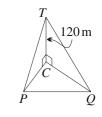
University Pre

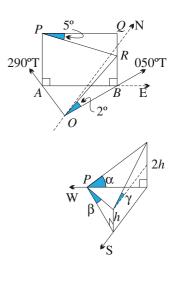
- 5. The prism in the diagram has a square base of side 4 cm and its height is 2 cm. ABC is a diagonal plane of the prism. Let θ be the acute angle between the diagonal plane and the base of the prism.
 - (a) Show that $MD = 2\sqrt{2}$ cm.
 - (b) Hence find θ , correct to the nearest minute.

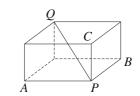


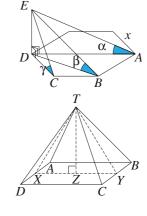

- (a) the angle between an oblique face and the base,
- (b) the angle between a slant edge and the base,
- (c) the angle between an opposite pair of oblique faces.
- 7. The diagram shows a cube of side 2x in which a diagonal plane ABC is drawn. Find, correct to the nearest minute, the angle between this diagonal plane and the base of the cube.
- 8. Two boats P and Q are observed from the top T of a vertical cliff CT of height 120 metres. P is on a bearing of 195° from the cliff and its angle of depression from T is 22°. Q is on a bearing of 161° from the cliff and its angle of depression from T is 27°.
 - (a) Show that $\angle PCQ = 34^{\circ}$.
 - (b) Use the cosine rule to show that the boats are approximately 166 metres apart.
- **9.** A plane is flying along the path PR. Its constant speed is 300 km/h. It flies directly over landmarks A and B, where B is due east of A. An observer at O first sights the plane when it is over A at a bearing of 290° T, and then, ten minutes later, he sights the plane when it is over B at a bearing of 50° T and with an angle of elevation of 2°.


DEVELOPMENT


- (a) Show that the plane has travelled 50 km in the ten minutes between observations.
- (b) Show that $\angle AOB = 120^{\circ}$.
- (c) Prove that the observer is 19670 metres, correct to the nearest ten metres, from landmark *B*.
- (d) Find the height h of the plane, correct to the nearest 10 metres, when it was directly above A.
- 10. Two towers of height 2h and h stand on a horizontal plane. The shorter tower is due south of the taller tower. From a point P due west of the taller tower, the angles of elevation of the tops of the taller and shorter towers are α and β respectively. The angle of elevation of the top of the taller tower from the top of the shorter tower is γ . Show that


$$4\cot^2\alpha = \cot^2\beta - \cot^2\gamma.$$





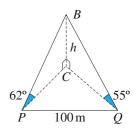
- 11. A, B, C and D are four of the vertices of a horizontal regular hexagon of side length x. DE is vertical and subtends angles of α , β and γ at A, B and C respectively.
 - (a) Show that each interior angle of a regular hexagon is 120° .
 - (b) Show that $\angle BAD = 60^{\circ}$ and $\angle ABD = 90^{\circ}$.
 - (c) Show that $BD = \sqrt{3}x$ and AD = 2x.
 - (d) Hence show that $\cot^2 \alpha = \cot^2 \beta + \cot^2 \gamma$.
- 12. The diagram shows a rectangular pyramid. X and Y are the midpoints of AD and BC respectively and T is directly above Z. TX = 15 cm, TY = 20 cm, AB = 25 cm and BC = 10 cm.
 - (a) Show that $\angle XTY = 90^{\circ}$.
 - (b) Hence show that T is 12 cm above the base.
 - (c) Hence find, correct to the nearest minute, the angle that the front face DCT makes with the base.
- 13. A plane is flying due east at 600 km/h at a constant altitude. From an observation point P on the ground, the plane is sighted on a bearing of 320° . One minute later, the bearing of the plane is 75° and its angle of elevation is 25° .
 - (a) How far has the plane travelled between the two sightings?
 - (b) Draw a diagram to represent the given information.
 - (c) Show that the altitude h metres of the plane is given by $h = \frac{10\,000\,\sin 50^\circ \tan 25^\circ}{\sin 65^\circ}$ and hence find the altitude, correct to the nearest metre.
 - (d) Find, correct to the nearest degree, the angle of elevation of the plane from P when it was first sighted.
- 14. (a) The diagonal PQ of the rectangular prism in the diagram makes angles of α, β and γ respectively with the edges PA, PB and PC.
 - (i) Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
 - (ii) What is the two-dimensional version of this result?
 - (b) Suppose that the diagonal PQ makes angles of θ , ϕ and ψ with the three faces of the prism that meet at P.
 - (i) Prove that $\sin^2 \theta + \sin^2 \phi + \sin^2 \psi = 1$.
 - (ii) What is the two-dimensional version of this result?
- 15. The diagram shows a hill inclined at 20° to the horizontal. A straight road AF on the hill makes an angle of 35° with a line of greatest slope. Find, correct to the nearest minute, the inclination of the road to the horizontal.
- 16. The plane surface APRC is inclined at an angle θ to the horizontal plane APQB. Both APRC and APQB are rectangles. PR is a line of greatest slope on the inclined plane. $\angle BPQ = \phi$ and $\angle BPC = \alpha$. Show that $\tan \alpha = \tan \theta \cos \phi$.
- 17. The diagram shows a triangular pyramid, all of whose faces are equilateral triangles such a solid is called a *regular* tetrahedron. Suppose that the slant edges are inclined at an angle θ to the base. Show that $\cos \theta = \frac{1}{3}\sqrt{3}$.

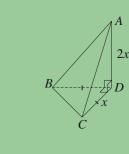
2012	University

- 18. A square pyramid has perpendicular height equal to the side length of its base.
 - (a) Show that the angle between a slant edge and a base edge it meets is $\cos^{-1} \frac{1}{6}\sqrt{6}$.
 - (b) Show that the angle between adjacent oblique faces is $\cos^{-1}(-\frac{1}{5})$.
- **19.** A cube has one edge AB of its base inclined at an angle θ to the horizontal and another edge AC of its base horizontal. The diagonal AP of the cube is inclined at angle ϕ to the horizontal.

EXTENSION

- (a) Show that the height h of the point P above the horizontal plane containing the edge AC is given by $h = x \cos \theta (1 + \tan \theta)$, where x is the side length of the cube.
- (b) Hence show that $\cos^2 \phi = \frac{2}{3}(1 \sin \theta \cos \theta)$.
- **20.** The diagram shows a triangular pyramid ABCD. The horizontal base BCD is an isosceles triangle whose equal sides BD and CD are at right angles and have length x units. The edge AD has length 2x units and is vertical.
 - (a) Let α be the acute angle between the front face ABC and the base BCD. Show that $\alpha = \cos^{-1} \frac{1}{2}$.
 - (b) Let θ be the acute angle between the front face ABC and a side face (that is, either ABD or ACD). Show that $\theta = \cos^{-1} \frac{2}{3}$.

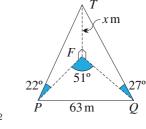

Exercise 2H

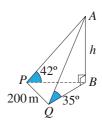

- 1. A balloon B is due north of an observer P and its angle of elevation is 62° . From another observer Q 100 metres from P, the balloon is due west and its angle of elevation is 55° . Let the height of the balloon be h metres and let C be the point on the level ground vertically below B.
 - (a) Show that $PC = h \cot 62^{\circ}$, and write down a similar expression for QC.
 - (b) Explain why $\angle PCQ = 90^{\circ}$.
 - (c) Use Pythagoras' theorem in $\triangle CPQ$ to show that

$$h^2 = \frac{100^2}{\cot^2 62^\circ + \cot^2 55^\circ} \,.$$

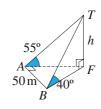
- (d) Hence find h, correct to the nearest metre.
- 2. From a point P due south of a vertical tower, the angle of elevation of the top of the tower is 20°. From a point Q situated 40 metres from P and due east of the tower, the angle of elevation is 35°. Let h metres be the height of the tower.
 - (a) Draw a diagram to represent the situation. 40

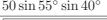
(b) Show that
$$h = \frac{40}{\sqrt{\tan^2 70^\circ + \tan^2 55^\circ}}$$
, and evaluate *h*, correct to the nearest metre.





- **3.** In the diagram, TF represents a vertical tower of height x metres standing on level ground. From P and Q at ground level, the angles of elevation of T are 22° and 27° respectively. tively. PQ = 63 metres and $\angle PFQ = 51^{\circ}$.
 - (a) Show that $PF = x \cot 22^{\circ}$ and write down a similar expression for QF.
 - 63^{2} (b) Use the cosine rule to show that $x^2 = \frac{1}{\cot^2 22^\circ + \cot^2 27^\circ - 2 \cot 22^\circ \cot 27^\circ \cos 51^\circ}$
 - (c) Use a calculator to show that $x \doteq 32$.
- 4. The points P, Q and B lie in a horizontal plane. From P, which is due west of B, the angle of elevation of the top of a tower AB of height h metres is 42° . From Q, which is on a bearing of 196° from the tower, the angle of elevation of the top of the tower is 35° . The distance PQ is 200 metres.
- (a) Explain why $\angle PBQ = 74^{\circ}$.
- 200^{2} 2012 (b) Show that $h^2 = \frac{200}{\cot^2 42^\circ + \cot^2 35^\circ - 2 \cot 35^\circ \cot 42^\circ \cos 74^\circ}$
- (c) Hence find the height of the tower, correct to the nearest metre.


DEVELOPMENT


- **5.** The diagram shows a tower of height h metres standing on level ground. The angles of elevation of the top T of the tower from two points A and B on the ground nearby are 55° and 40° respectively. The distance AB is 50 metres and the interval AB is perpendicular to the interval AF, where F is the foot of the tower.
 - (a) Find AT and BT in terms of h.
 - (b) What is the size of $\angle BAT$?
 - (c) Use Pythagoras' theorem in $\triangle BAT$ to show that $h = \frac{50 \sin 55^\circ \sin 40^\circ}{\sqrt{\sin^2 55^\circ \sin^2 40^\circ}}$
 - (d) Hence find the height of the tower, correct to the nearest metre
- 6. The diagram shows two observers P and Q 600 metres apart on level ground. The angles of elevation of the top T of a landmark TL from P and Q are 9° and 12° respectively. The bearings of the landmark from P and Q are 32° and 306° respectively. Let h = TL be the height of the landmark.
 - (a) Show that $\angle PLQ = 86^{\circ}$.
 - (b) Find expressions for PL and QL in terms of h.
 - (c) Hence show that h = 79 metres.
- 7. PQ is a straight level road. Q is x metres due east of P. A vertical tower of height h metres is situated due north of P. The angles of elevation of the top of the tower from P and Q are α and β respectively.
 - (a) Draw a diagram representing the situation.
 - (b) Show that $x^2 + h^2 \cot^2 \alpha = h^2 \cot^2 \beta$.
 - (c) Hence show that $h = \frac{x \sin \alpha \sin \beta}{\sqrt{\sin(\alpha + \beta) \sin(\alpha \beta)}}$.

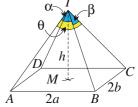
Press

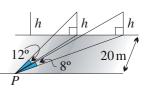
NORMANHURST BOYS' HIGH SCHOOL

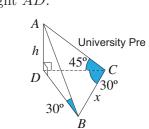
- 8. In the diagram of a triangular pyramid, AQ = x, BQ = y, PQ = h, $\angle APB = \theta$, $\angle PAQ = \alpha$ and $\angle PBQ = \beta$. Also, there are three right angles at Q.
 - (a) Show that $x = h \cot \alpha$ and write down a similar expression for y.
 - (b) Use Pythagoras' theorem and the cosine rule to show that $\cos \theta = ----$

$$\frac{1}{\sqrt{(x^2 + h^2)(y^2 + h^2)}}$$

- (c) Hence show that $\sin \alpha \sin \beta = \cos \theta$.
- **9.** A man walking along a straight, flat road passes by three observation points P, Q and Rat intervals of 200 metres. From these three points, the respective angles of elevation of the top of a vertical tower are 30° , 45° and 45° . Let h metres be the height of the tower.
 - (a) Draw a diagram representing the situation.
 - (b) (i) Find, in terms of h, the distances from P, Q and R to the foot F of the tower.
 - (ii) Let $\angle FRQ = \alpha$. Find two different expressions for $\cos \alpha$ in terms of h, and hence find the height of the tower.
- **10.** ABCD is a triangular pyramid with base BCD and perpendicular height AD.
 - (a) Find BD and CD in terms of h.
 - (b) Use the cosine rule to show that $2h^2 = x^2 \sqrt{3}hx$. 2012
 - (c) Let $u = \frac{h}{x}$. Write the result of the previous part as a quadratic equation in u, and hence show that

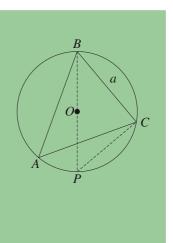

$$\frac{h}{x} = \frac{\sqrt{11} - \sqrt{3}}{4}$$


- 11. The diagram shows a rectangular pyramid. The base ABCD has sides 2a and 2b and its diagonals meet at M. The perpendicular height TM is h. Let $\angle ATB = \alpha, \angle BTC = \beta$ and $\angle ATC = \theta$.
 - (a) Use Pythagoras' theorem to find AC, AM and AT in terms of a, b and h.
 - (b) Use the cosine rule to find $\cos \alpha$, $\cos \beta$ and $\cos \theta$ in terms of a, b and h.
 - (c) Show that $\cos \alpha + \cos \beta = 1 + \cos \theta$.
- **12.** The diagram shows three telegraph poles of equal height h metres standing equally spaced on the same side of a straight road 20 metres wide. From an observer at P on the other side of the road directly opposite the first pole, the angles of elevation of the tops of the other two poles are 12° and 8° respectively. Let x metres be the distance between two adjacent poles.

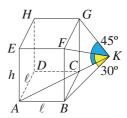

(a) Show that
$$h^2 = \frac{x^2 + 20^2}{\cot^2 12^\circ}$$
.

(b) Hence show that
$$x^2 = \frac{20^2 (\cot^2 8^\circ - \cot^2 12^\circ)}{4 \cot^2 12^\circ - \cot^2 8^\circ}$$
.

(c) Hence calculate the distance between adjacent poles, correct to the nearest metre.


- **13.** A building is in the shape of a square prism with base edge ℓ metres and height h metres. It stands on level ground. The diagonal AC of the base is extended to K, and from K, the respective angles of elevation of F and G are 30° and 45° .
 - (a) Show that $BK^2 = h^2 + \ell^2 + \sqrt{2}h\ell$.
 - (b) Hence show that $2h^2 \ell^2 = \sqrt{2}h\ell$.
 - (c) Deduce that $\frac{h}{\ell} = \frac{\sqrt{2} + \sqrt{10}}{4}$.
- 14. From a point P on level ground, a man observes the angle of elevation of the summit of a mountain due north of him to be 18° . After walking 3 km in a direction N50°E to a point Q, the man finds that the angle of elevation of the summit is now 13° .
 - (a) Show that $(\cot^2 13^\circ \cot^2 18^\circ)h^2 + (6000 \cot 18^\circ \cos 50^\circ)h 3000^2 = 0$, where h metres is the height of the mountain.
 - (b) Hence find the height, correct to the nearest metre.
- **15.** A plane is flying at a constant height h, and with constant speed. An observer at P sighted the plane due east at an angle of elevation of 45° . Soon after it was sighted again in a north-easterly direction at an angle of elevation of 60° .

University Pre


- (a) Write down expressions for PC and PD in terms of h.
- (b) Show that $CD^2 = \frac{1}{3}h^2(4-\sqrt{6})$.
- (c) Find, as a bearing correct to the nearest degree, the dff2ction in which the planerqs flying.
- 16. Three tourists T_1 , T_2 and T_3 at ground level are observing a landmark L. T_1 is due north of L, T_3 is due east of L, and T_2 is on the line of sight from T_1 to T_3 and between them. The angles of elevation to the top of L from T_1 , T_2 and T_3 are 25° , 32° and 36° respectively.
 - (a) Show that $\tan \angle LT_1T_2 = \frac{\cot 36^\circ}{\cot 25^\circ}$.
 - (b) Use the sine rule in $\triangle LT_1T_2$ to find, correct to the nearest minute, the bearing of T_2 from L.

EXTENSION

- 17. (a) Use the diagram on the right to show that the diameter *BP* of the circumcircle of $\triangle ABC$ is $\frac{a}{\sin A}$.
 - (b) A vertical tower stands on level ground. From three observation points P, Q and R on the ground, the top of the tower has the same angle of elevation of 30° . The distances PQ, PR and QR are 60 metres, 50 metres and 40 metres respectively.
 - (i) Explain why the foot of the tower is the centre of the circumcircle of $\triangle PQR$.
 - (ii) Use the result in part (a) to show that the height of the tower is $\frac{80}{21}\sqrt{21}$ metres.

NE

60

Р

Exercise **2G** (Page 70)

```
1(a) 56^{\circ}19' (b) 8.8 \,\mathrm{cm} (c) 27^{\circ}7'
2(a) 39^{\circ}52', 35^{\circ}33' (b) 72 metres
3(b) 110 metres (c) 14^{\circ}
4(a) x (g) 35^{\circ}16'
5(b) 35^{\circ}16'
6(a) 63^{\circ}26' (b) 54^{\circ}44' (c) 53^{\circ}8'
7 54°44′
9(d) 5040 metres
12(c) 67^{\circ}23'
13
                                     (a) 10000 metres
              10\,000\,m
                                     (c) 3941 metres
                                    (d) 54^{\circ}
 320°
                                 75°
```

14(a)(ii) $\cos^2 \alpha + \cos^2 \beta = 1$, where $\alpha + \beta = 90^{\circ}$. **(b)(ii)** $\sin^2 \theta + \sin^2 \phi = 1$, where $\theta + \phi = 90^{\circ}$. **15** $16^{\circ}16'$

Exercise 2H (Page 75)

1(a) $h \cot 55^{\circ}$ (b) It is the angle between south and east. (d) 114 metres 2(b) 13 metres 3(a) $x \cot 27^{\circ}$ 4(c) 129 metres **5(a)** $AT = h \operatorname{cosec} 55^{\circ}, BT = h \operatorname{cosec} 40^{\circ}$ (b) 90° (d) 52 metres**6(b)** $PL = h \cot 9^{\circ}, QL = h \cot 12^{\circ}$ 8(a) $y = h \cot \beta$ **9(b)(i)** $\sqrt{3}h, h, h$ (ii) $\cos \alpha = \frac{100}{h}$ or $\frac{80\,000 - h^2}{400h}$, h = 200 metres 10(a) $BD = \sqrt{3}h, CD = h$ 11(a) $AC = 2\sqrt{a^2 + b^2}$, $AM = \sqrt{a^2 + b^2}$, $AT = \sqrt{a^2 + b^2 + h^2} \quad \text{(b)} \quad \cos \alpha = \frac{-a^2 + b^2 + h}{a^2 + b^2 + h^2} \\ \cos \beta = \frac{a^2 - b^2 + h^2}{a^2 + b^2 + h^2}, \\ \cos \theta = \frac{-a^2 - b^2 + h^2}{a^2 + b^2 + h^2}$ **12(c)** 17 metres **14(b)** 535 metres 15(a) $PC = h, PD = \frac{1}{3}h\sqrt{3}$ (c) 305° Sadler, Julia **16(b)** $13^{\circ}41'$ 17(b)(i) The foot of the tower is equidistant from P, Q and R, the distance being $h \cot 30^{\circ}$.

NESA Reference Sheet – calculus based courses

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

 $A = \frac{\theta}{360} \times \pi r^2$ $A = \frac{h}{2} (a + b)$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

 $V = \frac{1}{3}Ah$ $V = \frac{4}{3}\pi r^3$

Functions

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

 $(x-h)^{2} + (y-k)^{2} = r^{2}$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}(a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_{a} a^{x} = x = a^{\log_{a} x}$$
$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$
$$a^{x} = e^{x \ln a}$$

- 1 -

Trigonometric Functions Statistical Analysis $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ An outlier is a score $z = \frac{x - \mu}{\sigma}$ less than $Q_1 - 1.5 \times IQR$ $A = \frac{1}{2}ab\sin C$ more than $Q_3 + 1.5 \times IQR$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Normal distribution $c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\sqrt{3}$ $l = r\theta$ $A = \frac{1}{2}r^2\theta$ z Ò -3 -2 -1approximately 68% of scores have **Trigonometric identities** z-scores between -1 and 1 $\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$ approximately 95% of scores have z-scores between -2 and 2 $\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$ approximately 99.7% of scores have z-scores between -3 and 3 $\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$ $E(X) = \mu$ $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$ $\cos^2 x + \sin^2 x = 1$ Probability **Compound angles** $P(A \cap B) = P(A)P(B)$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$ Continuous random variables $P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$ $\cos A = \frac{1-t^2}{1+t^2}$ $P(a < X < b) = \int^{b} f(x) dx$ $\tan A = \frac{2t}{1-t^2}$ $\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$ **Binomial distribution** $p(v - r) - {n \choose n} r (1 - n)^{n - r}$ $\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$

$$P(X = r) = {}^{n}C_{r}p(1-p)^{r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

- 2 -

 $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$

 $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$

 $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$

 $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

Differential Calculus

Integral Calculus

$y = f(x)^{n} \qquad \frac{dy}{dx} = nf'(x)[f(x)]^{n-1} \qquad y = n + 1^{1/(x)} - 1^{n-1} + 1^{1/(x)} - 1^{n-1} + 1^{n$	Function	Derivative	$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$
$y = g(u) \text{ where } u = f(x) \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $y = \frac{u}{v} \qquad \qquad \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $y = \sin f(x) \qquad \qquad \frac{dy}{dx} = f'(x)\cos f(x)$ $y = \cos f(x) \qquad \qquad \frac{dy}{dx} = -f'(x)\sin f(x)$ $y = \tan f(x) \qquad \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x)$ $\int f'(x)e^{f(x)}dx = \tan f(x) + c$ $\int f'(x)e^{f(x)}dx = e^{f(x)} + c$ $\int \frac{f'(x)e^{f(x)}dx = e^{f(x)} + c}{f(x)}dx = \ln f(x) + c$	$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	
$y = \frac{u}{v}$ $y = \frac{u}{v}$ $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int f'(x)\cos f(x) dx = \sin f(x) + c$ $\int f'(x)\sec^2 f(x) dx = \tan f(x) + c$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$ $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$	y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
$y = \sin f(x) \qquad \qquad \frac{dy}{dx} = f'(x)\cos f(x) \\ y = \cos f(x) \qquad \qquad \frac{dy}{dx} = -f'(x)\sin f(x) \\ y = \tan f(x) \qquad \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x) \qquad \qquad \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c \\ \int \frac{f'(x)}{f(x)}dx = \ln f$	y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
dx $y = \cos f(x)$ $\frac{dy}{dx} = -f'(x)\sin f(x)$ $\int \frac{f'(x)e^{f(x)}dx = e^{f(x)} + c}{\int \frac{f'(x)}{f(x)}dx = \ln f(x) + c}$ $\int \frac{f'(x)e^{f(x)}dx}{f(x)}dx = \ln f(x) + c$ $\int \frac{f'(x)e^{f(x)}dx}{f(x)}dx = \ln f(x) + c$	$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \cos f(x) \qquad \qquad \frac{dy}{dx} = -f'(x)\sin f(x) \qquad \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c$ $y = \tan f(x) \qquad \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x) \qquad \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c$ $f(x) \qquad \qquad \qquad \int \frac{dy}{dx} = f(x) + c$	$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \tan f(x) \qquad \qquad \frac{1}{dx} = f'(x) \sec^2 f(x) \qquad \qquad f(x)$	$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	
$y = e^{f(x)} \qquad \qquad \frac{dy}{dx} = f'(x)e^{f(x)} \qquad \qquad \int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$	$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	
	$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$	$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)} \qquad \frac{dy}{dx} = (\ln a) f'(x) a^{f(x)} \qquad \int f'(x) dx = \frac{1}{tor^{-1}} f(x) + c$	$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int f'(x) = \frac{1}{\tan^{-1}} f(x) + c$
$y = \log_a f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)} \qquad \qquad \qquad \int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$	$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int \frac{dx}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan \left(\frac{1}{a} + c \right)$
$y = \sin^{-1} f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \qquad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	$y = \sin^{-1} f(x)$		
$y = \cos^{-1} f(x) \qquad \qquad \frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \qquad \int_a^b f(x) dx$	$y = \cos^{-1} f(x)$	V L V J	
$y = \tan^{-1} f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2} \qquad \qquad \qquad \approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$	$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$
- 3 -		-:	3 -

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} |\underline{u}| &= \left| x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \underline{u} \right| \left| \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

 $z = a + ib = r(\cos \theta + i\sin \theta)$ $= re^{i\theta}$ $\left[r(\cos \theta + i\sin \theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

 $\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$ $x = a\cos(nt + \alpha) + c$ $x = a\sin(nt + \alpha) + c$ $\ddot{x} = -n^2(x - c)$

– 4 –

© 2018 NSW Education Standards Authority

References

- Grove, M. (2010). *Maths in focus: mathematics extension preliminary course* (E. Bron, Ed.). McGraw-Hill Australia Pty Ltd.
- Jones, S. B., & Couchman, K. E. (1981). *3 Unit Mathematics* (Vol. 1). Addison Wesley Longman Australia.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (1999). Cambridge Mathematics 3 Unit Year 11 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (2000). Cambridge Mathematics 3 Unit Year 12 (1st ed.). Cambridge University Press.